Practical Evaluation and Complexity Analysis of Forgery Attacks on the PAES-8 Authenticated Encryption Scheme

Main Article Content

Susila Windarta
Imas Purbasari

Abstract

The Parallelizable Authenticated Encryption Scheme (PAES)-8, designed by Ye et al. in 2014, claims to provide 128-bit authentication security in the nonce-misuse model. However, Sasaki and Wang's theoretical forgery attack on PAES-8 exposed vulnerabilities, suggesting a universal forgery with a complexity of approximately . This study presents a practical implementation of Sasaki and Wang’s theoretical forgery attack on the PAES-8 encryption scheme, uncovering significant modifications required for its execution. This including the use of DDT-based plaintext injection, staged state recovery, multiple injection attempts, and algorithmic adjustments. Our findings demonstrate that these modifications increase the attack complexity to approximately 211+212+27 = 212, indicating greater resistance in PAES-8 than previously anticipated. Future cryptanalysis should focus on exploring nonce-respecting models to evaluate the scheme’s security.

Article Details

Section
Telecommunication

References

Aumasson, J.-P., Jovanovic, P., & Neves, S. (2015). NORX8 and NORX16: Authenticated Encryption for Low-End Systems. https://eprint.iacr.org/2015/1154

Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T., Sasaki, Y., Sim, S. M., & Todo, Y. (2021). GIFT-COFB v1.1. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf

Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T., & Yasuda, K. (2021). PHOTON-Beetle Authenticated Encryption and Hash Family. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf

Bellare, M., & Namprempre, C. (2008). Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. Journal of Cryptology, 21, 469–491. https://doi.org/10.1007/s00145-008-9026-x

Bernstein, D. (2013). CAESAR: Call for Submissions.

Bhaumik, R., & Nandi, M. (2017). Improved Security for OCB3. https://eprint.iacr.org/2017/845

Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin, T., & Schrottenloher, A. (2020). Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Transactions on Symmetric Cryptology, 2020(Special Issue 1), 160–207. https://doi.org/10.13154/TOSC.V2020.IS1.160-207

Charlton, E. (2024). Cybersecurity: Rising Threats and System Safety. World Economic Forum Agenda. https://www.weforum.org/agenda/2024/01/cybersecurity-cybercrime-system-safety/

Choi, W., Hwang, S., Lee, B., & Lee, J. (2024). ZLR: a fast online authenticated encryption scheme achieving full security. Designs, Codes and Cryptography. https://doi.org/10.1007/s10623-024-01434-6

Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., & Van Keer, R. (2020). Xoodyak, a lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology, 2020(Special Issue 1), 60–87. https://doi.org/10.13154/TOSC.V2020.IS1.60-87

Dobraunig, C., Mendel, F., Eichlseder, M., & Schläffer, M. (2021). Ascon v1.2 Submission to NIST (p. 52). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

Jean, J., Nikolić, I., Peyrin, T., & Seurin, Y. (2021). The Deoxys AEAD Family. Journal of Cryptology, 34. https://doi.org/10.1007/s00145-021-09397-w

Jean, J., Nikolic, I., Sasaki, Y., & Wang, L. (2016). Practical forgeries and distinguishers against PAES. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 99, 39–48. https://doi.org/10.1587/transfun.E99.A.39

Jimale, M. A., Z’aba, M. R., Kiah, M. L. B. M., Idris, M. Y. I., Jamil, N., Mohamad, M. S., & Rohmad, M. S. (2022). Authenticated Encryption Schemes: A Systematic Review. IEEE Access, 10, 14739–14766. https://doi.org/10.1109/ACCESS.2022.3147201

NIST. (2001). Advanced Encryption Standard (AES) (Issue FIPS PUB 197). https://csrc.nist.gov/pubs/fips/197/final

Sasaki, Y., & Wang, L. (2014). A Practical Universal Forgery Attack against PAES-8 (p. 218). Citeseer. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.4356&rep=rep1&type=pdf

Schroé, W. (2015). Cryptanalysis of Submission to the CAESAR Cryptographic Competition iFeed. https://www.esat.kuleuven.be/cosic/publications/thesis-262.pdf

Statista. (2024). Cost of cybercrime worldwide forecast. https://www.statista.com/forecasts/1280009/cost-cybercrime-worldwide

Van Tilborg, H. C., & Jajodia, S. (Eds.). (2011). Encyclopedia of Cryptography and Security (2nd ed.). Springer Science+Business Media, LLC. https://doi.org/10.1007/978-1-4419-5906-5

Wu, H., & Preneel, B. (2013). AEGIS: A Fast Authenticated Encryption Algorithm. https://eprint.iacr.org/2013/695

Ye, D., Wang, P., Hu, L., Wang, L., Xie, Y., Sun, S., & Wang, P. (2014). Parallelizable Authenticated Encryption Schemes based on AES Round Function. http://competitions.cr.yp.to/round1/paesv1.pdf