

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

DOI : 10.17933/bpostel.v22i2.403 41

Practical Evaluation and Complexity Analysis of Forgery Attacks on the
PAES-8 Authenticated Encryption Scheme
Susila Windarta1*, Imas Purbasari2
1Politeknik Siber dan Sandi Negara
1Jalan Raya Haji Usa, Putat Nutug, Ciseeng, Bogor 16120
2Badan Siber dan Sandi Negara
2Jalan Harsono RM No. 70, Ragunan, Pasar Minggu, Jakarta Selatan 12550
Email*: susila.windarta@poltekssn.ac.id

ARTICLE INFORMATION A B S T R A C T
Received 30 August 2024
Revised 23 October 2024
Accepted 12 December 2024
Keywords:
AEAD
Authenticated encryption
Forgery attack
Nonce-misuse
PAES-8

 The Parallelizable Authenticated Encryption Scheme (PAES)-8, designed by Ye et al.
in 2014, claims to provide 128-bit authentication security in the nonce-misuse model.
However, Sasaki and Wang's theoretical forgery attack on PAES-8 exposed
vulnerabilities, suggesting a universal forgery with a complexity of approximately
2!!. This study presents a practical implementation of Sasaki and Wang’s theoretical
forgery attack on the PAES-8 encryption scheme, uncovering significant
modifications required for its execution. This including the use of DDT-based
plaintext injection, staged state recovery, multiple injection attempts, and algorithmic
adjustments. Our findings demonstrate that these modifications increase the attack
complexity to approximately 2!! + 2!" + 2# ≈ 2!", indicating greater resistance in
PAES-8 than previously anticipated. Future cryptanalysis should focus on exploring
nonce-respecting models to evaluate the scheme’s security.

1. Introduction
A recent report by the World Economic Forum (Charlton, 2024) highlights that the global cost of cybercrime

is projected to reach $23.84 trillion by 2027, a significant increase from $8.44 trillion in 2022. This sharp rise
underscores the growing severity and financial impact of cyberattacks, which have become a critical concern for
global leaders and businesses. The report also notes that 2023 witnessed several major cyberattacks, including
those targeting the US State Department, reflecting the increasing sophistication and frequency of these threats.

In response to these escalating cyber threats, security technologies such as Authenticated Encryption (AE)
schemes have become essential for ensuring data confidentiality and authenticity (Jimale et al., 2022). By
integrating encryption and authentication into a single operation, AE schemes offer robust protection against a
wide array of attacks that threaten the security of digital communications. As cyber threats continue to evolve
(Statista, 2024), the resilience of these schemes under various attack models becomes increasingly crucial.

The concept of AE schemes was introduced by Bellare and Namprempre in 2000 and further developed
(Bellare & Namprempre, 2008). NIST and Daniel J. Bernstein organized a competition to identify an AE scheme,
the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) (Bernstein,
2013). CAESAR ran for four rounds. One of the CAESAR candidates submitted in the first round was the
Parallelizable Authenticated Encryption Scheme (PAES), designed by Ye et al. (2014). Other algorithms, such
as Ascon (Dobraunig et al., 2021), Deoxys (Jean et al., 2021), and NORX (Aumasson et al., 2015) are noted for
their high performance, while OCB3 (Bhaumik & Nandi, 2017), and AEGIS (Wu & Preneel, 2013) emphasize
robust security. Lightweight designs like GIFT-COFB (Banik et al., 2021), Photon-Beetle (Bao et al., 2021),
Saturnin (Canteaut et al., 2020), Xoodyak (Daemen et al., 2020), and ZLR (Choi et al., 2024) cater to resource-
constrained environments, demonstrating the adaptability of modern cryptographic solutions.

PAES is an AE scheme built on the round function of the AES block cipher algorithm (NIST, 2001). PAES
consists of two structures, PAES-4 and PAES-8. Both structures are similar except for the number of states used.
PAES-4 uses four state blocks, while PAES-8 uses eight state blocks. Each state block is 128 bits, which will be

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

42

used in the encryption process along with 128 bits of the key cap 𝐾, 128 bits of the nonce cap 𝑁, 128 bits of
associated data, and plaintext of arbitrary size.

There are two types of attacks on AE schemes: confidentiality attacks and authenticity attacks. Forgery is an
attack that aims to falsify the authenticity of the message. Forgery attacks carried out using brute force or by
exploiting weaknesses in the scheme (Schroé, 2015). These attacks are considered significant because they can
invalidate the security claims of the targeted AE scheme. PAES scheme security is divided into two categories
based on the nonce model used: nonce-respecting and nonce-repeating, commonly referred to as nonce-misuse.
A nonce is a unique value used no more than once for the same purpose, designed to prevent replay attacks (Van
Tilborg & Jajodia, 2011). In the nonce-respecting model, the attacker cannot reuse the same nonce, while in the
nonce-misuse model, the attacker can use the same nonce repeatedly. Ye et al. claim that PAES-8 in the nonce-
misuse model provides 128 bits of authentication security.

In 2014, Sasaki and Wang performed a forgery attack on PAES-8 (the attack was re-written in Jean et al.,
2016). This forgery attack is a universal forgery conducted in the nonce-misuse model. The attack aims to
generate a tag value from any plaintext of at least 15 blocks or 240 bytes. The attack exploits weakness in plaintext
difference propagation through an injection process. This process uses different plaintexts to form differential
attack trajectories and recover the state values in PAES-8. Sasaki and Wang stated that to produce a forgery with
this method, the attacker only needs a data complexity of 2!! (Sasaki & Wang, 2014). However, Yu Sasaki
confirmed that the attack was theoretical and had not been implemented in practice.

This gap between theoretical analysis and practical implementation introduces a research problem: Can the
forgery attack on PAES-8, as proposed by Sasaki and Wang, be executed practically, and if so, how does the
added complexity affect the scheme’s real-world security? Understanding whether PAES-8 can withstand such
attacks under nonce-misuse conditions will offer valuable insights into the scheme’s resilience and inform future
cryptographic designs. Therefore, in this study, an implementation of the forgery attack on PAES-8 based on the
concept proposed by Sasaki and Wang is carried out using the C programming language. The aim is to determine
whether the theoretical forgery attack proposed by Sasaki and Wang on the PAES-8 encryption scheme can be
implemented practically and, if so, how its complexity affects the scheme's real-world security.

This study makes the following key contributions to the field of cryptographic security:
1) Practical implementation of a forgery attack:

§ This research bridges the gap between theoretical cryptanalysis and practical application by implementing
the forgery attack on the PAES-8 authenticated encryption scheme, as initially proposed by Sasaki and
Wang.

§ The study demonstrates that executing the attack requires modifications beyond the original theoretical
model, highlighting the complexities involved in real-world scenarios.

2) Modified Attack Algorithm with Increased Complexity: The findings reveal that an additional step involving
differential plaintext injection is necessary, increasing the attack complexity. This result challenges the initial
assumptions about the attack's simplicity, suggesting that PAES-8 offers more resilience than previously
believed.

3) Enhanced Understanding of PAES-8 Security Vulnerabilities:
§ By providing a detailed analysis of the modified forgery attack, this research contributes to a deeper

understanding of the security weaknesses within PAES-8, particularly under nonce-misuse conditions.
§ The insights gained from this study lay the groundwork for further cryptanalysis efforts, especially in

assessing PAES-8’s security in nonce-respecting scenarios.
The present work is organized as follows: Section 2 covers PAES-8's theoretical basis and nonce-misuse

security assertions. Section 3 describes how the forgery attack on PAES-8 was implemented, modifying the
theory. Section 4 compares theoretical predictions with practical data and examines the attack's effects on PAES-
8's security. Section 5 shows that implementing the forgery attack on PAES-8 required solving additional
differential equations, increasing attack complexity and suggesting that PAES-8 may be more resilient than
expected. Section 6 concludes with significant findings and research directions.

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

43

2. Literature review
2.1 Forgery Attack

Authenticity is a service that ensures the received ciphertext originates from a legitimate sender. A forgery
attack targets the authenticity service within an AE scheme. A forgery attack on an AE scheme occurs when an
attacker can generate a valid ciphertext/associated data/tag pair (𝐶, 𝐴𝐷, 𝑇), even though the scheme has never
produced that pair. A brute force attack targeting authenticity is called tag guessing, where the attacker selects a
ciphertext and searches for a valid tag by attempting all possible tag values. Besides brute force attacks, an
attacker can also exploit weaknesses in the scheme to compromise authenticity.

There are three types of forgery attacks: existential forgery, selective forgery, and universal forgery (Liu &
Liu, 2017).
1) Existential Forgery: Existential forgery occurs when an attacker can create at least one plaintext/tag pair

(𝑃, 𝑇), where 𝑃 was not generated by a legitimate user. The attacker does not need control over the plaintext
P, meaning the plaintext could be meaningless information.

2) Selective Forgery: Selective forgery occurs when an attacker can generate a plaintext/tag pair (𝑃, 𝑇), where
the plaintext 𝑃 is chosen before the attack is executed.

3) Universal Forgery: Universal forgery occurs when an attacker can generate a plaintext/tag pair (𝑃, 𝑇) for any
given plaintext 𝑃.
Forgery attacks are based on the nonce usage model in AE schemes, specifically nonce-respecting and nonce-

misuse models (Ye et al., 2014).
1) Nonce-Respecting

In the nonce-respecting model, the nonce used in AE is guaranteed to be unique for each encryption. This
restricts the attacker to using a nonce only once during a forgery attack.

2) Nonce-Misuse
In the nonce-misuse model, the same nonce can be used more than once, which may happen due to
implementation errors. When the same nonce is reused, an attacker can perform forgery attacks under the
assumption that the nonce is repeated.

2.2 PAES-8
PAES requires inputs that are 128-bit key 𝐾, 128-bit nonce 𝑁, associated data 𝐴𝐷 and plaintext 𝑃 of arbitrary

length. The output of PAES consists of the ciphertext 𝐶 and the tag value 𝑇 of 128 bits. PAES consists of two
structures, namely PAES-4 and PAES-8. The difference between the two structures lies in the size of the internal
state used: four blocks in PAES-4 and eight blocks in PAES-8. 𝑆 size, which is four blocks in PAES-4 and eight
blocks in PAES-8, each measuring 128 bits.

PAES-8 consists of an internal state 𝑆 which has eight words, namely 𝑆!, 𝑆", … , 𝑆#. PAES-8 uses two similar
state update functions denoted by StateUpdate$ and StateUpdate!. These state update functions require a block
input of 𝑀 of 128 bits to update the state. The two-state update functions in PAES-8 are shown in Figure 1, with
StateUpdate$ shown without the dotted line or the XOR process between 𝑆% and 𝑆#. The following subsections
describe the encryption and decryption of PAES-8 under forgery attacks.

Figure 1. State Update Function in PAES-8

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

44

2.3 PAES-8 Encryption
The PAES-8 encryption scheme is divided into four stages: initialization, associated data processing,

plaintext processing, and finalization, as shown in Figure 2.

Figure 2. Overall PAES-8 Encryption Process

1) Initialization
At the initialization stage, 128 bits of the key 𝐾 and 128 bits of the nonce 𝑁 are mixed and loaded into eight

words in the internal state. 𝑆. The state is then processed with the StateUpdate$ function for ten rounds and
XORed with the key. The initialization stage in PAES-8 is shown in Table 1. 𝐿 is a linear transformation that
operates on a 128-bit word 𝑎 ∥ 𝑏 ∥ 𝑐 ∥ 𝑑 and is defined as 𝐿(𝑎, 𝑏, 𝑐, 𝑑) 	= 	 (𝑏, 𝑐, 𝑑 ⊕ 𝑎, 𝑎). 𝐿& is the notation of
the rank composition function	𝑖 of the linear transformation 𝐿, e.g. 𝐿" 	= 	𝐿 ∘ 𝐿.

Table 1. Algorithm 1: Initialization

Input : 128-bit key 𝐾 and 128-bit nonce 𝑁
Output : State 𝑆 = 𝑆!, 𝑆", … , 𝑆#
1. 𝑆! = 𝐾⊕𝑁
2. 𝑆" = 𝐿(𝐾)⊕ 𝐿$(𝑁)
3. 𝑆$ = 𝐿"(𝐾)⊕ 𝐿(𝑁)
4. 𝑆% = 𝐿$(𝐾)⊕ 𝐿"(𝑁)
5. 𝑆& = 𝐿%(𝐾)⊕ 𝐿'(𝑁)
6. 𝑆(= 𝐿&(𝐾)⊕ 𝐿$(𝑁)
7. 𝑆' = 𝐿((𝐾)⊕ 𝐿&(𝑁)
8. 𝑆# = 𝐿'(𝐾)⊕ 𝐿((𝑁)
9. 𝑓𝑜𝑟	𝑖 = 1	𝑡𝑜	10
10. 𝑆 ← StateUpdate)(𝑆, 0)
11. 𝑓𝑜𝑟	𝑖 = 1	𝑡𝑜	8
12. 𝑆* ← 𝑆* ⊕𝐾
13. Return(𝑆)

2) Plaintext Processing
A 128-bit plaintext block is defined as 𝑃& for	𝑖	 = 	0, … , 𝐿 − 1, where 𝐿 is the number of blocks in the

plaintext. In each round of PAES-8, the ciphertext 𝐶& is obtained by XORing the keystream 𝑅& with 𝑃&, using a
single function call to StateUpdate!. The process of plaintext encryption is illustrated in Table 2 and Figure 3.
3) Finalization

The last stage of PAES-8 encryption is finalization, which generates the tag value for the ciphertext. The tag
value 𝑇 is produced by XORing 𝑆% and 𝑆# after ten rounds of processing with StateUpdate$ function. The input
at this stage is the the plaintext length 𝑀'(), which is 128 bits in size. The finalization stage is shown in Table 3.

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

45

Table 2. Algorithm 2 Plaintext processing

Input : State 𝑆 = 𝑆!, 𝑆", … , 𝑆$ and plaintext 𝑃%
Output : Ciphertext 𝐶%
1. 𝑡𝑚𝑝 = 𝑆#
2. 𝑆 ← StateUpdate!(𝑆, 𝑃%)
3. 𝑅% = 𝑡𝑚𝑝⊕ 𝑆#
4. 𝐶% = 𝑃% ⊕𝑅%
5. Return(𝑆)

Table 3. Algorithm 3 Finalization

Input : State 𝑆 = 𝑆!, 𝑆", … , 𝑆$, plaintext length 𝑀&'(
Output : Tags 𝑇
1. for	𝑖 = 1	to	10
2. 𝑆 ← StateUpdate)(𝑆,𝑀&'()
3. 𝑇 = 𝑆#⊕𝑆$
4. Return(𝑇)

Figure 3. Processing of One Block ofPlaintext on PAES-8

2.4 Decryption on PAES-8
The initialization and processing stages of associated data in ciphertext decryption are the same as in plaintext

encryption. Each ciphertext block 𝐶& 	is process, as shown in Figure 4. The entire internal state is updated, except
𝑆# using the function StateUpdate!. The plaintext 𝑃& is obtained through the XOR operation between the
keystream 𝑅& with the ciphertext 𝐶& and then 𝑆# is updated.

Tag value generation during decryption is the same as in encryption. In decryption, if the generated tag value
is equal to 𝑇, the plaintext 𝑃 is obtained; otherwise, the error symbol ⊥ is returned.

Figure 4. Processing of One Ciphertext Block on PAES-8

2.5 Sasaki and Wang's Forgery Attack on PAES-8
Sasaki and Wang's forgery attack on PAES-8 constitutes a universal forgery. The objective of this attack is

to generate valid tag values for any plaintext consisting of at least 15 blocks (240 bytes). The attack leverages
state recovery, meaning that once the internal states of a specific round are fully known, the remaining finalization
steps can be executed efficiently, allowing the tag values to be derived independently.

The forgery attack on PAES-8 is carried out using the nonce-misuse model, where the same nonce in each
message encryption. Additionally, to simplify the attack, Sasaki and Wang (2014) set the associated data to an

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

46

empty string; in other words, no associated data is used during the plaintext encryption process. Based on these
two assumptions, the encryption process for each plaintext produces the same state value during the initialization
stage. After this stage, the process continues with the plaintext processing stage.

Sasaki and Wang's forgery attack on PAES-8 utilizes differential trajectories, illustrated by the thick red lines
in Figure 5. These trajectories are obtained from the encryption process of the forgery target 𝑃 and the injection
of different plaintext𝑠, Δ𝑃* on the plaintext block 𝑃$ and Δ𝑃+ on 𝑃!, with cancellation occuring between them in
𝑆#. The differential attack trajectory highlights the state blocks with non-zero difference values between the
forgery target encryption 𝑃 and plaintext injection 𝑃′.

Figure 5. Differential Trajectory of the Injection Process Results

The formation of the differential trajectory can result in two cases: the case of cancellation and the case of
no cancellation. Figure 5 illustrates the two differential trajectories formed during the injection process. The thick

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

47

red line represents the differential trajectory when cancellation occurs, while the absence of cancellation is
indicated by an additional orange trajectory. Based on these two cases, the cancellation of each injection process
is detected to determine whether a differential trajectory of the attack is formed. This attack differential trajectory
is then used during the state recovery stage.

The steps in this attack can be summarized as follows:
a. Injection of different plaintexts into two consecutive plaintext blocks such that cancellation occurs in 𝑆# with

high probability.
b. The invalidation of 𝑆# is indicated by a different ciphertext after the eighth round; if this occurs, it will leak

information about the state.
c. Once the state is restored, tags are produced by going through the remaining transformations of what is now

the public construction.
The forgery attack on PAES-8 for plaintext 𝑃	 = 	 (𝑃$ ∥ 𝑃! ∥ ⋯ ∥ 𝑃!,) is shown in Algorithm 4. In Algorithm

4, there are two iterations. The first iteration aims to recover 𝑆# and 𝑆% over five rounds, while the second iteration
aims to recover 𝑆% over the next two rounds. Each iteration will produce two pairs, Δ𝑃* and Δ𝑃+, with a
probability of 2-.. In this case, if no canceling differential trajectory is found with the probability of 2-., the
attacker can replace it with a probability of 2-% and run the loop 2# times. Based on Table 4, the attack complexity
is: 16.2% 	+ 2% 	≈ 2!! computations.

Table 4. Algorithm 4 Sasaki and Wangs’ Universal Forgery Attack

Input : Plaintext 𝑃 = (𝑃) ∥ 𝑃! ∥ ⋯ ∥ 𝑃!%)
Output : Ciphertext 𝐶 = 𝐶) ∥ 𝐶! ∥ ⋯ ∥ 𝐶!%) and tags 𝑇
1. Query the first 15 plaintext blocks of the targe 𝑃	 = 	 (𝑃) ∥ 𝑃! ∥ ⋯ ∥ 𝑃!%)t and get the key stream

𝑅), 𝑅!, …	, 𝑅!%.
2. 𝒇𝒐𝒓	𝑝𝑜𝑠 = 1	𝒕𝒐	16	𝒅𝒐
3. 𝒇𝒐𝒓	𝑘 = 1	𝒕𝒐	2'𝒅𝒐
4. Select a different plaintext Δ𝑃+,	with 1 byte active at the specified position and find Δ𝑃-, that

corresponds.
5. Query (𝑃)⊕Δ𝑃+, ∥ 𝑃!⊕Δ𝑃-, ∥ 𝑃" ∥ ⋯ ∥ 𝑃!%) and obtain the keystream 𝑅), , …	, 𝑅!%, .	
6. Check if the difference 𝑅'⊕𝑅', can produce 𝑅'⊕𝑅', ⊕𝑅#⊕𝑅#, with 𝐴𝐸𝑆).
7. Verify the same property in the next 4 rounds.
8. Keep the pairs that satisfy steps 6 and 7.
9. 𝒆𝒏𝒅	𝒇𝒐𝒓
10. Recover the byte at 𝑝𝑜𝑠 from the word state 𝑆# in loop 0.
11. 𝒆𝒏𝒅	𝒇𝒐𝒓
12. Recover 𝑆' from rounds 8, 9, 10, 11, and 12.
13. 𝒇𝒐𝒓	𝑘 = 1	𝒕𝒐	2'	𝒅𝒐
14. Select the difference Δ𝑃+,	with 1 byte active at a specified position and find Δ𝑃-, that corresponds.
15. Query (𝑃) ∥ 𝑃! ∥ 𝑃"⊕Δ𝑃+, ∥ 𝑃$⊕Δ𝑃-, ∥ ⋯ ∥ 𝑃!%) and obtain the key stream 𝑅), , …	, 𝑅!%, .	
16. Check if the difference 𝑅.⊕𝑅., can produce 𝑅.⊕𝑅., ⊕𝑅!)⊕𝑅!), with 𝐴𝐸𝑆).
17. Verify the same property in the next 4 rounds.
18. Save the pairs that satisfy steps 16 and 17.
19. end	for
20. Recover 𝑆' from laps 13 and 14.
21. Determine all states in round 8.
22. Continue the rest of the transformation and generate the tag value.

3. Method
3.1 Experiment Setup

The experiment was conducted on a laptop featuring an Intel Core i3 processor, dual-core, running at 2.00
GHz and 8 GB of RAM. The device’s operating system supported the C programming language, and the code

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

48

was developed using the GCC or Clang compilers for portability. Optional integrated development environments
(IDEs), such as Visual Studio Code or Code::Blocks were utilized to streamline coding and debugging. The
implementation required cryptographic functions, which were achieved either through custom AES code or by
leveraging libraries like OpenSSL. This setup ensures that the computational resources and software tools were
adequate to efficiently perform encryption, injection, and state recovery processes.

Figure 6. Research Stages

3.2 Research Stages
In this attack, it is assumed that the attacker can perform encryption requests. These encryption requests are

made for each different plaintext using the same key and nonce, without incorporating associated data. The
forgery attack is implemented through the following stages (see Figure 6): .
a. Generating the forgery target, which is the plaintext 𝑃	 = 	 (𝑃$ ∥ 𝑃! ∥ ⋯ ∥ 𝑃!,) of 15 blocks or 240 bytes, as

well as obtaining the ciphertext 𝐶	 = 	 (𝐶$ ∥ 𝐶! ∥ ⋯ ∥ 𝐶!,) through the encryption process and obtaining the
keystream 𝑅$, 𝑅!, … , 𝑅!,	by performing an XOR operation between the plaintext and the ciphertext.

b. Generating the Differential Distribution Table (DDT) from the AES s-box.
c. Performing different selections of plaintext Δ𝑃* and Δ𝑃+ using the difference (𝛼, 𝛽) with a probability of

2-., based on the following equation:

Δ𝑃* = (𝛼, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ...1)
Δ𝑃+ = 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠	 ∘ 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠	(𝛽, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)...2)

with 𝛼 placed in any 16-byte position in the state and 𝛽	in the same position as 𝛼.
d. Performing the injection of Δ𝑃* and Δ𝑃+ into the plaintext block 𝑃$ and 𝑃!.
e. Detecting any cancellation that occurs between Δ𝑃* and Δ𝑃+ at 𝑆#.
f. Recovering the internal state based on the detected differential trajectories.
g. Computing the tag value for the ciphertext based on the recovered state.

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

49

h. Validating attack by decrypting using the tag and comparing the plaintext.
i. Analyzing complexity and performance.

3.3 Population and Sample
The forgery target used in this attack implementation consists of 15 blocks (240 bytes) of plaintext, denoted

as 𝑃	 = 	 (𝑃$ ∥ 𝑃! ∥ ⋯ ∥ 𝑃!,). The choice of 15 blocks is based on the minimum requirement for the forgery
attack, as specified by Sasaki and Wang. Consequently, the attack population comprises 2",$×# 	= 	 2!0"$
possible plaintexts. In this study, only one plaintext is selected as the forgery target, as the attack is classified as
a universal forgery, meaning it can be executed on any given plaintext. The forgery target is randomly generated
and is presented in Table 5.

Table 5. Plaintext 𝑃 Used in the Forgery Attack Implementation

𝑃* Plaintext Block
𝑃) 0𝑥𝑒6𝑓𝑓57𝑎𝑎𝑏𝑑694𝑎18𝑎9424𝑎25𝑒70979𝑐8
𝑃! 0𝑥𝑑𝑒72𝑎92𝑐8𝑎5454𝑎𝑐70𝑏𝑒9𝑎4𝑎𝑎𝑏𝑐26232
𝑃" 0𝑥8𝑏28𝑓2643260𝑎6𝑐𝑎𝑐08248𝑑𝑒76𝑎82𝑐𝑒𝑒
𝑃$ 0𝑥𝑏𝑐0𝑐𝑐6350202𝑐𝑑91𝑑4𝑏𝑏𝑑2𝑐6𝑐1𝑓2𝑎𝑎7𝑒
𝑃% 0𝑥𝑏3𝑏𝑒𝑓2426𝑏3𝑎𝑏4𝑐8𝑐0𝑓42613118𝑓5076
𝑃& 0𝑥9𝑐3𝑐65𝑐𝑑0𝑒𝑒𝑑𝑑5𝑎𝑓𝑓4494652𝑓𝑑𝑓5𝑒𝑓𝑐9
𝑃(0𝑥24𝑓453893𝑓𝑏126𝑐22140𝑐19252𝑓d908𝑒
𝑃' 0𝑥𝑏5662𝑎𝑒𝑐53𝑓𝑒8𝑏𝑒22𝑎𝑎92𝑑89𝑓66𝑏9𝑓𝑏2
𝑃# 0𝑥𝑏3𝑎𝑓77𝑓352𝑐0𝑓𝑓6995𝑒𝑒𝑓c70540351𝑑𝑓
𝑃. 0𝑥19𝑎4077𝑓0𝑓2𝑏𝑎45033504488𝑐𝑎458𝑒𝑏8
𝑃!) 0𝑥76471𝑒6759𝑐4𝑒59𝑏67878243614𝑑0𝑐7𝑑
𝑃!! 0𝑥𝑎90𝑎𝑓7𝑏𝑏𝑒𝑒9𝑒066492𝑓𝑏𝑓𝑑𝑏8𝑎3𝑓𝑒64𝑒𝑏
𝑃!" 0𝑥5𝑓2𝑒𝑐5890892𝑎9𝑓𝑎𝑒𝑓𝑐69𝑒58𝑓𝑏𝑓𝑑945𝑐
𝑃!$ 0𝑥𝑏𝑏2𝑎3𝑒𝑒𝑐9𝑒𝑑𝑏979𝑎𝑎𝑑𝑎571𝑎𝑒07774909
𝑃!% 0𝑥𝑑𝑐𝑓256𝑐𝑎𝑑𝑐817502𝑎037018058968𝑓73

Table 6. Ciphertext 𝐶 Used in the the Forgery Attack Implementation

𝐶* Ciphertext Block
𝐶) 0𝑥18𝑒𝑑𝑑99𝑏8612𝑎𝑒𝑓2𝑎02𝑒422𝑓298𝑓4895
𝐶! 0𝑥767𝑒𝑓𝑏𝑒40𝑐51638𝑏94𝑐𝑒26𝑏289𝑐𝑒𝑐7𝑏9
𝐶" 0𝑥6𝑎199𝑒0𝑑40𝑒8𝑎041𝑓2𝑏73781𝑑394𝑑811
𝐶$ 0𝑥56𝑓𝑑9𝑐5𝑓𝑎7𝑓𝑒9𝑎𝑏𝑐𝑒𝑏𝑎780𝑑75313𝑐𝑏5𝑏
𝐶% 0𝑥𝑎086𝑎539824𝑓𝑐9𝑐𝑏7622256𝑑𝑒53𝑓𝑏109
𝐶& 0𝑥10𝑓𝑎4𝑓𝑓26𝑏4𝑏09𝑑674𝑒𝑏4708𝑐𝑐𝑒4𝑏888
𝐶(0𝑥3𝑎8903𝑐𝑓2𝑒4499𝑐𝑑𝑎𝑐631𝑒83656122𝑑𝑑
𝐶' 0𝑥58𝑏342𝑎2290𝑏𝑎𝑎45𝑑5𝑐𝑓7𝑐819𝑓692𝑐77
𝐶# 0𝑥4072𝑏𝑐𝑏𝑒0𝑏5𝑑𝑒414𝑎𝑑7813𝑑25𝑎8𝑐𝑒8𝑑𝑒
𝐶. 0𝑥5𝑐01𝑑1488𝑏9𝑏9𝑒2𝑑3𝑒92𝑏𝑑3𝑏𝑏3𝑐8𝑑0𝑑4
𝐶!) 0𝑥𝑏40689668𝑐641𝑎82𝑒0197𝑐7993548𝑎7𝑑
𝐶!! 0𝑥𝑐12𝑑𝑐𝑒701108𝑓𝑐4561𝑎4𝑎67𝑓64116𝑏98
𝐶!" 0𝑥𝑓346𝑒62𝑏𝑐𝑏67𝑓𝑐9𝑐58𝑑4𝑑𝑓62𝑓5𝑐𝑑𝑐4𝑓0
𝐶!$ 0𝑥195𝑎68𝑓43𝑒0𝑎𝑎𝑑84𝑒𝑎𝑐630𝑎3𝑒20𝑐6𝑒05
𝐶!% 0𝑥71327𝑑9𝑓47𝑐6906𝑐2𝑐𝑓70𝑑2𝑏3𝑓8𝑒7𝑑6𝑒

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

50

The message length of the forgery target is defined by 𝑀'() 	= 	0𝑥00000000000
000000000000000000780, which represents 1920 bits. The forgery target is subjected to an encryption
request using a key and nonce with values of 𝐾	 = 	0𝑥10𝑐𝑑91𝑓4𝑐𝑓0𝑑3𝑑54𝑎3301𝑓𝑎939𝑓𝑎𝑐4𝑓𝑐 and 𝑁 =
	0𝑥36283𝑏17𝑑3𝑒𝑐71002373𝑓𝑓5𝑒6𝑑8309𝑎6. The key and nonce are randomly generated from a population
equal to 2!"#. The encryption result of the plaintext 𝑃, which is the ciphertext 𝐶	, is shown in Table 6.

4. Results
This section describes the implementation results of Sasaki and Wang's (2014) forgery attack on PAES-8.

The explanation of the attack implementation consists of the injection of different plaintexts, Δ𝑃* and Δ𝑃+, state
recovery, and tag value generation. In state recovery, it is known that recovery 𝑆# requires a differential attack
trajectory formed from the cancellation of the (𝛥𝑃* , 𝛥𝑃+) with a probability of 2-. and (𝛥𝑃* , 𝛥𝑃+) with a
probability of 2-%. Therefore, during the injection process, the selection and injection of different plaintexts, Δ𝑃*
and Δ𝑃+, are performed withprobability 2-. and 2-%, respectively.

4.1 Plaintext Differential Injection 𝛥𝑃* and 𝛥𝑃+
The injection stage of the Sasaki and Wang’s forgery attack aims to obtain the differential trajectory of the

attack. This is achieved by performing an XOR operation with different plaintexts. Specifically, 𝛥𝑃* is applied
to the plaintext block 𝑃$, and the light text difference Δ𝑃+ is applied to the light text block 𝑃!. The injection of
𝛥𝑃* is performed to cancel the effect of the Δ𝑃+ injection on the activation 𝑆#, thereby forming a differential
attack trajectory. The following subsections describe the results of selecting Δ𝑃* and Δ𝑃+ during the injection
stage, as well as the detection of cancellations occuring between the injections.

4.1.1 Differential Selection of Plaintext 𝛥𝑃* and 𝛥𝑃+ 	
The Selection of Δ𝑃* and Δ𝑃+ is based on the input and output difference values derived from DDT of the

AES s-box. All differences (𝛼, 𝛽) with DDT values of 4 or 2 are selected. Table 7 and Table 8 show the (𝛼, 𝛽)
differences with probabilities of 2-. and 2-%, respectively.

Table 7. Differences (𝛼, 𝛽) with a DDT value of 4

No. (𝛼, 𝛽)
1. (0𝑥01, 0𝑥1𝑓)
2. (0𝑥02, 0𝑥14)
⋮ ⋮

254. (0𝑥𝑓𝑒, 0𝑥𝑑8)
255. (0𝑥𝑓𝑓, 0𝑥75)

Table 8. Differences (𝛼, 𝛽) with a DDT value of 2

No. (𝛼, 𝛽)
1. (0𝑥01, 0𝑥01)
2. (0𝑥01, 0𝑥04)

⋮ ⋮
32.129. (0𝑥𝑓𝑓, 0𝑥𝑓𝑒)
32.130. (0𝑥𝑓𝑓, 0𝑥𝑓𝑓)

 Based on Table 7 and Table 8, there are 255 differences (𝛼, 𝛽) with a DDT value of 4 and a total of
32,130 differences (𝛼, 𝛽) with a DDT value of 2. From these, 2% = 128 differences (𝛼, 𝛽) with DDT a value of
4 and 2# = 256 differences (𝛼. 𝛽) with a DDT value of 2 are used as Δ𝑃* and Δ𝑃+ pairs in the injection process.

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

53

4.1.2 Cancellation Detection between 𝛥𝑃* and 𝛥𝑃+ 	
The detection result for the invalidation of 2,048 injections of Δ𝑃* and Δ𝑃+ with a cancellation probability

of 2-. and 16 × 2# 	= 	4.096 injection of Δ𝑃* and Δ𝑃+ with a cancellation probability of 2-%, are shown in
Table 9 and Table 10. These tables display the (𝛼, 𝛽) differences that form Δ𝑃* and Δ𝑃+ at the 16
positionscausing the invalidation.

Table 9. Differences (𝛼, 𝛽) with Probability 2*+ Causing Cancellation

No. Differences (𝛼, 𝛽) at the i-th Position
1 2 3 4

1. (0𝑥5𝑏, 0𝑥5𝑎) (0𝑥0𝑓, 0𝑥15) (0𝑥0𝑐, 0𝑥9𝑑) (0𝑥34,0𝑥7𝑏)
2. − − (0𝑥51, 0𝑥𝑏2) −
3. − − (0𝑥5𝑑, 0𝑥2𝑓) −
 5 6 7 8

1. (0𝑥39, 0𝑥71) (0𝑥5𝑒, 0𝑥3𝑏) (0𝑥3𝑓, 0𝑥16) (0𝑥55, 0𝑥9𝑓)
2. (0𝑥4𝑑, 0𝑥80) − − −
3. (0𝑥74, 0𝑥𝑓1) − − −
 9 10 11 12

1. (0𝑥6𝑏, 0𝑥1𝑐) (0𝑥6𝑏, 0𝑥1𝑐) (0𝑥17, 0𝑥93) (0𝑥42, 0𝑥4𝑓)
2. − (0𝑥2𝑐, 0𝑥12)
3. − (0𝑥3𝑏, 0𝑥81)
 13 14 15 16

1. (0𝑥52, 0𝑥63) (0𝑥10, 0𝑥𝑎9) (0𝑥77, 0𝑥96) (0𝑥59, 0𝑥𝑎8)
2. − (0𝑥25, 0𝑥5𝑐) − −
3. − (0𝑥35, 0𝑥𝑓5) − −

Based on Table 9 and Table 10, it is evident that 24 out of a total of the 2,048 injections with a cancellation
probability of 2-. and 32 out of a total of 4,096 injections with a probability of 2-%, results incancellation.
Theseinvalidations occur accross all 16 positions of Δ𝑃* and Δ𝑃+.

The invalidation results in Table 9 and Table 10 also show invalidation for all positions. For injections with
a cancellation probability of 2-., among the 16 positions, at most three injections and at least one injection cause
cancellations. In contrast, for injections with a cancellation probability of 2-%, the number of cancelations is
consistent across all positions, woth two injections per position. The Δ𝑃* and Δ𝑃+ 	formed from the differing
(𝛼, 𝛽) values causing the cancellations are collectively referred to as the Cancellation (Δ𝑃* , Δ𝑃+

Table 10. Differences (𝛼, 𝛽) with Probability 2*# Causing Cancellation

No. Differences (𝛼, 𝛽) at the i-th Position
1 2 3 4

1. (0𝑥01, 0𝑥11) (0𝑥01, 0𝑥𝑑𝑑) (0𝑥01, 0𝑥06) (0𝑥01, 0𝑥𝑎8)
2. (0𝑥02, 0𝑥𝑏1) (0𝑥02, 0𝑥𝑎1) (0𝑥02, 0𝑥83) (0𝑥02, 0𝑥𝑓𝑎)
 5 6 7 8
1. (0𝑥01, 0𝑥0𝑓) (0𝑥01, 0𝑥97) (0𝑥01, 0𝑥𝑓7) (0𝑥01, 0𝑥𝑎𝑐)
2. (0𝑥02, 0𝑥𝑎𝑎) (0𝑥02, 0𝑥12) (0𝑥02, 0𝑥𝑒6) (0𝑥02, 0𝑥𝑓𝑎)
 9 10 11 12
1. (0𝑥01, 0𝑥80) (0𝑥01, 0𝑥2𝑎) (0𝑥01, 0𝑥𝑎9) (0𝑥01, 0𝑥59)
2. (0𝑥02, 0𝑥85) (0𝑥02, 0𝑥𝑓𝑑) (0𝑥02, 0𝑥40) (0𝑥02, 0𝑥8𝑒)
 13 14 15 16
1. (0𝑥01, 0𝑥𝑓𝑓) (0𝑥01, 0𝑥8𝑒) (0𝑥01, 0𝑥93) (0𝑥01, 0𝑥𝑎1)
2. (0𝑥02, 0𝑥𝑑𝑒) (0𝑥02, 0𝑥0𝑐) (0𝑥02, 0𝑥2𝑓) (0𝑥02, 0𝑥𝑓2)

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

54

4.2 State Recovery
The state is recovered by observing the obtained differential trajectories and the trajectories in the PAES-8

encryption scheme. There are no specific stipulations on the selection of attack differential trajectories, but any
attack differential trajectory that align the thick red line in Figure 5 can be used. State recovery is conducted in
stages.
1) Recovery of 𝑆##1

The recovery of 𝑆##1 is achieved by first recovering 𝑆# in the 0th round (𝑆#$1) and then progressively
recovering 𝑆# for all rounds up to 𝑆##1. The recovery of 𝑆#$1 is performed byte by byte using 16 differential attack
trajectories obtained from the injection of Cancellation cΔ𝑃* , Δ𝑃+d at each position. Table 11 and Table 12 show
the solutions to the differential equations for recovery at 16 positions of 𝑆#$1. The solutions in Table 11 uses the
Cancellation cΔ𝑃* , Δ𝑃+d probability 2-., derived from the difference (𝛼, 𝛽) in Table 9. Meanwhile, the solutions
in Table 12 uses the canceling probability formed from the difference in Table 9 cΔ𝑃* , Δ𝑃+d probability 2-%,
derived from the difference (𝛼, 𝛽) shown in Table 10.

Table 11. Solution of the differential equation for the recovery of 𝑆$), using Cancellation (Δ𝑃- , Δ𝑃.) probability 2*+
Position (𝛼, 𝛽) Solution

1 (0𝑥5𝑏, 0𝑥5𝑎) 0𝑥00, 0𝑥5𝑏, 0𝑥𝑎9, 0𝑥𝑓2
2 (0𝑥0𝑓, 0𝑥15) 0𝑥00, 0𝑥0𝑓, 0𝑥81, 0𝑥8𝑒
3 (0𝑥0𝑐, 0𝑥9𝑑) 0𝑥00, 0𝑥0𝑐, 0𝑥51, 0𝑥5𝑑
4 (0𝑥34,0𝑥7𝑏) 0𝑥00, 0𝑥34, 0𝑥99, 0𝑥𝑎𝑑
5 (0𝑥39, 0𝑥71) 0𝑥00, 0𝑥39, 0𝑥4𝑑, 0𝑥74
6 (0𝑥5𝑒, 0𝑥3𝑏) 0𝑥00, 0𝑥5𝑒, 0𝑥8𝑑, 0𝑥𝑑3
7 (0𝑥3𝑓, 0𝑥16) 0𝑥00, 0𝑥3𝑓, 0𝑥𝑑1, 0𝑥𝑒𝑒
8 (0𝑥6𝑏, 0𝑥1𝑐) 0𝑥00, 0𝑥55, 0𝑥9𝑏, 0𝑥𝑐𝑒	
9 (0𝑥6𝑏, 0𝑥1𝑐) 0𝑥00, 0𝑥6𝑏, 0𝑥9𝑑, 0𝑥𝑓6
10 (0𝑥6𝑏, 0𝑥1𝑐) 0𝑥00, 0𝑥6𝑏, 0𝑥9𝑑, 0𝑥𝑓6
11 (0𝑥17, 0𝑥93) 0𝑥00, 0𝑥17, 0𝑥2𝑐, 0𝑥3𝑏
12 (0𝑥42, 0𝑥4𝑓) 0𝑥00, 0𝑥42, 0𝑥𝑏7, 0𝑥𝑓5
13 (0𝑥52, 0𝑥63) 0𝑥00, 0𝑥52, 0𝑥82, 0𝑥𝑑0
14 (0𝑥10, 0𝑥𝑎9) 0𝑥00, 0𝑥10, 0𝑥25, 0𝑥35
15 (0𝑥77, 0𝑥96) 0𝑥00, 0𝑥77, 0𝑥92, 0𝑥𝑒5
16 (0𝑥59, 0𝑥𝑎8) 0𝑥00, 0𝑥59, 0𝑥93, 0𝑥𝑐𝑎

Table 12. Solution of the differential equation on recovery of 𝑆$), using the Cancellation (Δ𝑃- , Δ𝑃.) probability 2*#

Position (𝛼, 𝛽) Solution
1 (0𝑥01, 0𝑥11) 0𝑥𝑎8, 0𝑥𝑎9
2 (0𝑥01, 0𝑥𝑑𝑑) 0𝑥0𝑒, 0𝑥0𝑓
3 (0𝑥01, 0𝑥06) 0𝑥5𝑐, 0𝑥5𝑑
4 (0𝑥01,0𝑥𝑎8) 0𝑥98, 0𝑥99
5 (0𝑥01, 0𝑥0𝑓) 0𝑥74, 0𝑥75
6 (0𝑥01, 0𝑥97) 0𝑥5𝑒, 0𝑥5𝑓
7 (0𝑥01, 0𝑥𝑓7) 0𝑥𝑒𝑒, 0𝑥𝑒𝑓
8 (0𝑥01, 0𝑥𝑎𝑐) 0𝑥9𝑎, 0𝑥9𝑏
9 (0𝑥01, 0𝑥80) 0𝑥9𝑐, 0𝑥9𝑑
10 (0𝑥01, 0𝑥2𝑎) 0𝑥𝑓6, 0𝑥𝑓7
11 (0𝑥01, 0𝑥𝑎9) 0𝑥2𝑐, 0𝑥2𝑑
12 (0𝑥01, 0𝑥59) 0𝑥𝑓4, 0𝑥𝑓5
13 (0𝑥01, 0𝑥𝑓𝑓) 0𝑥82, 0𝑥83
14 (0𝑥01, 0𝑥8𝑒) 0𝑥34, 0𝑥35
15 (0𝑥01, 0𝑥93) 0𝑥92, 0𝑥93
16 (0𝑥01, 0𝑥𝑎1) 0𝑥58, 0𝑥59

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

55

Based on Tables 11 and Table 12, it is known that there is one solution from both tables that has the same

value. The red-colored solution in Table 12 indicates the same value in both differential equation solutions. Thus,
it can be concluded that the overall 128-bit differential equation solution is
0xa90f5d99745eee9b9df62cf582359259.

The solution value of the differential equation is the input value 𝐴𝐸𝑆$ at round 0; in other words, it is the
value of the 𝑆#$1 ⊕𝑃$. Therefore, to recover 𝑆#$1, the calculation 𝑆#$1 ⊕𝑃$⊕𝑃$ =
0𝑥4𝑓𝑓00𝑎33𝑐937𝑎48334𝑏466𝑑0653𝑐𝑒𝑏91 is performed. Subsequently, the recovery of 𝑆##1 is carried out,
yielding 𝑆##1 = 	0xa7617d5028c0d68dd81588dcecd050d5.
2) Recovery 𝑆%#1 , 𝑆%01 , 𝑆%!$1 , 𝑆%!!1 , and 𝑆%!"1

Recovery of 𝑆% uses a plaintext difference formed from the difference (𝛼, 𝛽) = (0𝑥5𝑏, 0𝑥5𝑎) at position 1
and (𝛼, 𝛽) = (0𝑥0𝑓, 0𝑥15) at position 2 with the plaintext difference values shown in Table 13.

Table 13. Plaintext Differences for the Recovery of 𝑆#

Plaintext
Differences Value

(Δ𝑃+!! , Δ𝑃-!!)
0𝑥5𝑏000000000000000000000000000000
0𝑥𝑏45𝑎5𝑎𝑒𝑒000000000000000000000000

(Δ𝑃+!" , Δ𝑃-!")
0𝑥000𝑓0000000000000000000000000000
0𝑥0000000000000000000000003𝑓2𝑎1515

The recovery of 𝑆% is performed by solving 16 differential equations of the form S(x)	⊕	S(x⊕Δinput)	=	

Δoutput.	Table 14 shows the solutions to the differential equations for the recovery 𝑆%#1 in each byte.
Table 14. Differential Equation Solutions for the Recovery of 𝑆#$,

The i-th byte
Solution

Conclusion (Δ𝑃+!! , Δ𝑃-!!) (Δ𝑃+!" , Δ𝑃-!")
1 0𝑥13, 0𝑥𝑎6 0𝑥86, 0𝑥𝑎6 0𝑥𝑎6
2 0𝑥4𝑎, 0𝑥𝑓3 0𝑥0𝑎, 0𝑥𝑓3 0𝑥𝑓3
3 0𝑥96, 0𝑥𝑏0 0𝑥0𝑑, 0𝑥96 	0𝑥96
4 0𝑥82, 0𝑥𝑐5 0𝑥15, 0𝑥𝑐5 	0𝑥𝑐5
5 0𝑥09, 0𝑥𝑑1 0𝑥09, 0𝑥34 0𝑥09
6 0𝑥36, 0𝑥𝑐𝑏 0𝑥52, 0𝑥𝑐𝑏 0𝑥𝑐𝑏
7 0𝑥25, 0𝑥61 0𝑥25, 0𝑥𝑎0 0𝑥25
8 0𝑥𝑎5, 0𝑥𝑎8 0𝑥7𝑓, 0𝑥𝑎5 0𝑥𝑎5
9 0𝑥1𝑑, 0𝑥31 0𝑥31, 0𝑥𝑐7 0𝑥31
10 0𝑥36, 0𝑥85 0𝑥5𝑐, 0𝑥85 0𝑥85
11 0𝑥12, 0𝑥8𝑐 0𝑥12, 0𝑥40 0𝑥12
12 0𝑥47, 0𝑥𝑑7 0𝑥𝑎0, 0𝑥𝑑7 0𝑥𝑑7
13 0𝑥62, 0𝑥7𝑒 0𝑥4𝑑, 0𝑥62 0𝑥62
14 0𝑥54, 0𝑥𝑐𝑓 0𝑥𝑐𝑓, 0𝑥𝑑9 0𝑥𝑐𝑓
15 0𝑥52, 0𝑥𝑑5 0𝑥𝑑5, 0𝑥𝑑𝑏 0𝑥𝑑5
16 0𝑥74, 0𝑥𝑓𝑐 0𝑥05, 0𝑥𝑓𝑐 0𝑥𝑓𝑐

Based on Table 14, the correct solution to the 16 differential equations is obtained, namely
0xa6f396c509cb25a5318512d762cfd5fc which is the value of 𝑆.#1 ⊕𝑆%#1. Thus, we get 𝑆%#1 =
	0xe337b28c5c0a7abdbef393e6677072ca.In the same way, 𝑆% is restored for the next 4 rounds.

Table 15 shows the 128-bit differential equation solutions for the recovery of 𝑆%01 , 𝑆%!$1 , 𝑆%!!1 and 𝑆%!"1. Table
16 shows the recovery values for 𝑆%01 , 𝑆%!$1 , 𝑆%!!1 and 𝑆%!"1. The values of 𝑆% are used to recover other states in
the 8th round. Table 17 shows the recovery results for 𝑆.#1 down to 𝑆2#1 based on the values of 𝑆%.

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

56

Table 15. Solutions to 16 Differential Equations for the Recovery of 𝑆#/, , 𝑆#!), , 𝑆#!!, and 𝑆#!",

State Solution to 16 Differential Equations
𝑆(./ ⊕𝑆'./ 0𝑥1276𝑑𝑑532𝑎0𝑏𝑑9278𝑓26𝑑2657𝑐54𝑓49𝑏
𝑆(!)/ ⊕𝑆'!)/ 0𝑥𝑎𝑒𝑑46𝑑𝑎82𝑓03169𝑑𝑏9𝑎7𝑏00𝑐27205𝑒𝑐3
𝑆(!!/ ⊕𝑆'!!/ 0𝑥06𝑒1𝑎𝑓63𝑎𝑓𝑒𝑓6𝑏819𝑓18𝑎7𝑏𝑑𝑒7𝑑𝑒𝑏638
𝑆(!"/ ⊕𝑆'!"/ 0𝑥09𝑐792𝑒8𝑎𝑑6𝑏3𝑑4𝑑78𝑓𝑑𝑏216𝑓313𝑑1𝑏0

Table 16. Recovery Results for 𝑆#/, , 𝑆#!), , 𝑆#!!, and 𝑆#!",

State State Recovery Value
𝑆'./ 0𝑥10𝑒𝑎79𝑐1059761𝑐086657𝑐4469𝑓𝑓𝑐𝑏𝑐𝑏
𝑆'!)/ 0𝑥554𝑓𝑎𝑓𝑓681275𝑏𝑏𝑑8𝑏𝑎785𝑓7107295𝑎7
𝑆'!!/ 0𝑥970𝑒38𝑓75487𝑎4𝑎40𝑐397𝑏𝑐𝑑𝑒26𝑏13𝑎7
𝑆'!"/ 0𝑥𝑓𝑓29013𝑐𝑎𝑏115𝑒85𝑓𝑓66200𝑎25841𝑐𝑑4

Table 17. Recovery Results for 𝑆+$, , 𝑆0$, , 𝑆1$, and 𝑆2$,
State State Recovery Value
𝑆(#/ 0𝑥45𝑐4244955𝑐15𝑓188𝑓76813105𝑏𝑓𝑎736
𝑆&#/ 0𝑥9𝑏4679𝑏977𝑐𝑐5𝑐𝑒𝑑3𝑎996934𝑒5𝑐5𝑓1𝑑7
𝑆%#/ 0𝑥4𝑎9452𝑑𝑑90𝑓𝑑𝑏9𝑒9𝑑𝑒253912𝑓1𝑑86𝑒𝑑4
𝑆$#/ 0𝑥7965𝑏69𝑎35155𝑐91847𝑐566911𝑒416𝑑3

3) Recovery 𝑆%!21 and 𝑆%!,1

The recovery of 𝑆%!21 	is conducted by repeating the attack, namely injecting different plaintexts Δ𝑃* and
Δ𝑃+ into the plaintext block 𝑃" and 𝑃2. Table 18 and Table 19 display the values of the differences (𝛼, 𝛽) forming
Δ𝑃* and Δ𝑃+ at the 16 positions, which led to the cancellation of the attack repetition.

Table 18. Difference (𝛼, 𝛽) Probability 2*+ That Causes Abortions in Attack Repetition

No. Difference (𝛼, 𝛽) at the i-th Position
1 2 3 4

1. (0𝑥30, 0𝑥67) (0𝑥28,0𝑥57) (0𝑥65,0𝑥2𝑒) (0𝑥7𝑒, 0𝑥90)
2. (0𝑥5𝑓, 0𝑥𝑎𝑐) − − −
3. (0𝑥6𝑓, 0𝑥𝑐𝑏) − − −
 5 6 7 8

1. (0𝑥42, 0𝑥4𝑓) (0𝑥42, 0𝑥4𝑓) (0𝑥0𝑐, 0𝑥9𝑑) (0𝑥59, 0𝑥𝑎8)
2. − − (0𝑥51, 0𝑥𝑏2) −
3. − − (0𝑥5𝑑, 0𝑥2𝑓) −
 9 10 11 12

1. (0𝑥3𝑑, 0𝑥44) (0𝑥5𝑒, 0𝑥3𝑏) (0𝑥1𝑏, 0𝑥𝑐𝑐) (0𝑥0𝑓, 0𝑥15)
2. − (0𝑥66, 0𝑥50)
3. − (0𝑥7𝑑, 0𝑥9𝑐)
 13 14 15 16

1. (0𝑥17, 0𝑥93) (0𝑥0𝑏, 0𝑥48) (0𝑥1𝑏, 0𝑥𝑐𝑐) (0𝑥2𝑒, 0𝑥52)
2. (0𝑥2𝑐, 0𝑥12) (0𝑥43, 0𝑥79) (0𝑥66, 0𝑥50) (0𝑥58, 0𝑥09)
3. (0𝑥3𝑏, 0𝑥81) (0𝑥48, 0𝑥31) (0𝑥7𝑑, 0𝑥9𝑐) (0𝑥76, 0𝑥5𝑏)

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

57

Table 19. Difference (𝛼, 𝛽) Probability 2*# That Cause Abortions in Attack Repetition

No. Difference (𝛼, 𝛽) at the i-th Position
1 2 3 4

1. (0𝑥01, 0𝑥97) (0𝑥01, 0𝑥4𝑏) (0𝑥01, 0𝑥𝑒6) (0𝑥01, 0𝑥3𝑎)
2. (0𝑥02, 0𝑥83) (0𝑥02, 0𝑥0𝑑) (0𝑥02, 0𝑥𝑐8) (0𝑥02, 0𝑥𝑏𝑐)
 5 6 7 8

1. (0𝑥01, 0𝑥59) (0𝑥01, 0𝑥59) (0𝑥01, 0𝑥29) (0𝑥01, 0𝑥6𝑏)
2. (0𝑥02, 0𝑥8𝑒) (0𝑥02, 0𝑥8𝑒) (0𝑥02, 0𝑥55) (0𝑥02, 0𝑥9𝑐)
 9 10 11 12

1. (0𝑥01, 0𝑥5𝑎) (0𝑥01, 0𝑥𝑑3) (0𝑥01, 0𝑥𝑒𝑓) (0𝑥01, 0𝑥𝑑𝑑)
2. (0𝑥02, 0𝑥𝑑0) (0𝑥02, 0𝑥58) (0𝑥02, 0𝑥2𝑑) (0𝑥02, 0𝑥𝑎1)
 13 14 15 16

1. (0𝑥01, 0𝑥𝑎9) (0𝑥01, 0𝑥4𝑐) (0𝑥01, 0𝑥𝑏6) (0𝑥01, 0𝑥24)
2. (0𝑥02, 0𝑥40) (0𝑥02, 0𝑥2𝑎) (0𝑥02, 0𝑥70) (0𝑥02, 0𝑥40)

The recovery of 𝑆%!21 and 𝑆%!,1 is conducted by solving differential equations. Two attack differential

trajectories formed from plaintext difference injection are used, as shown in Table 20. (Δ𝑃*!! , Δ𝑃+!
!) and

Cancellation (Δ𝑃*"" , Δ𝑃+"
") are differential plaintexts formed from the differences (𝛼, 𝛽) 	= 	 (0𝑥30, 0𝑥67) and

(𝛼, 𝛽) 	= 	 (0𝑥5𝑓, 0𝑥𝑎𝑐) at position 1. Table 21 shows the recovery results for 𝑆%!21 and 𝑆%!,1, while Table 22
shows the recovery results for 𝑆"#1 and 𝑆!#1, based on recovery 𝑆%!21 and 𝑆%!,1 .

Table 20. Plaintext Differences for the Recovery of 𝑆#!2, and 𝑆#!1,
Plaintext Differences Value

(Δ𝑃+"! , Δ𝑃-"!)
0𝑥30000000000000000000000000000000
0𝑥𝑐𝑒6767𝑎9000000000000000000000000

(Δ𝑃+"" , Δ𝑃-"")
0𝑥5𝑓000000000000000000000000000000
0𝑥43𝑎𝑐𝑎𝑐𝑒𝑓000000000000000000000000

Table 21. Recovery Results for 𝑆#!2, and 𝑆#!1,

State State Recovery Value
𝑆'!$/ 0𝑥5341229𝑒68𝑒40𝑏𝑒3487461302𝑏𝑏44𝑐78
𝑆'!%/ 0𝑥𝑓1317486𝑐83531𝑓𝑑0𝑓17203𝑑𝑐𝑒𝑐𝑓6𝑏74

Table 22. Recovery Results for 𝑆"$, and 𝑆!$,
State State Recovery Value
𝑆"#/ 0𝑥𝑎69468𝑑23637𝑐058𝑏18𝑐04𝑑𝑏𝑏𝑎25𝑏685
𝑆!#/ 0𝑥61𝑑53827717𝑑𝑑𝑒𝑐𝑐𝑓34𝑑𝑓𝑎𝑐048𝑐72𝑏85

4.3 Tag Value Generation
Tag value generation begins by processing the forgery target's plaintext after the 8th round, i.e. 𝑃# ∥ 𝑃0 ∥

𝑃!$ ∥ 𝑃!! ∥ 𝑃!" ∥ 𝑃!2 ∥ 𝑃!,	based on Algorithm 3 and using the recovered 8th round state values. The results of
all 8th round state recoveries are given in Table 23.

This plaintext processing produces the ciphertext and state value resulting from the processing of the last
plaintext block or the 15th round state value. The state value is then used to generate the tag value based on
Algorithm 4. The 15th round state value is provided in Table 24. The tag value generation results is
0𝑥𝑐𝑏28𝑓𝑓49𝑐79𝑐5𝑑𝑏4361064163𝑓36𝑎𝑒𝑎𝑎.

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

58

Table 23. State recovery results in the 8th round

State State Recovery Value
𝑆##/ 0𝑥𝑎7617𝑑5028𝑐0𝑑68𝑑𝑑81588𝑑𝑐𝑒𝑐𝑑050𝑑5
𝑆'#/ 0𝑥𝑒337𝑏28𝑐5𝑐0𝑎7𝑎𝑏𝑑𝑏𝑒𝑓393𝑒6677072𝑐𝑎
𝑆(#/ 0𝑥45𝑐4244955𝑐15𝑓188𝑓76813105𝑏𝑓𝑎736
𝑆&#/ 0𝑥9𝑏4679𝑏977𝑐𝑐5𝑐𝑒𝑑3𝑎996934𝑒5𝑐5𝑓1𝑑7
𝑆%#/ 0𝑥4𝑎9452𝑑𝑑90𝑓𝑑𝑏9𝑒9𝑑𝑒253912𝑓1𝑑86𝑒𝑑4
𝑆$#/ 0𝑥7965𝑏69𝑎35155𝑐91847𝑐566911𝑒416𝑑3
𝑆"#/ 0𝑥𝑎69468𝑑23637𝑐058𝑏18𝑐04𝑑𝑏𝑏𝑎25𝑏685
𝑆!#/ 0𝑥61𝑑53827717𝑑𝑑𝑒𝑐𝑐𝑓34𝑑𝑓𝑎𝑐048𝑐72𝑏85

Table 24. 15th round state value

State State Recovery Value
𝑆#!&/ 0𝑥𝑓𝑎4𝑐806𝑒6𝑎𝑓𝑏730𝑓𝑓2817𝑏𝑑58𝑏1600𝑓𝑎
𝑆'!&/ 0𝑥𝑒63𝑎𝑏𝑒𝑐1𝑐749684𝑑16𝑑488𝑎8𝑏607𝑒883
𝑆(!&/ 0𝑥𝑏6601𝑓𝑓97𝑓3𝑑396𝑓30𝑑0𝑓07𝑓5𝑏629𝑒21
𝑆&!&/ 0𝑥𝑒9𝑏𝑐47796839592𝑏52𝑎7𝑒𝑓871𝑎70𝑑403
𝑆%!&/ 0𝑥𝑏57𝑓888𝑏𝑑𝑓𝑏47314856358𝑐2𝑓𝑒37𝑑8𝑓𝑏
𝑆$!&/ 0𝑥3𝑓𝑏𝑑6𝑏𝑓7𝑏23084𝑏2𝑎𝑏45𝑐60𝑓41𝑎7𝑏358
𝑆"!&/ 0𝑥5𝑐𝑓15𝑓𝑑35372𝑑49383𝑑72𝑐96𝑎9𝑑79969
𝑆!!&/ 0𝑥20𝑓1𝑐1670𝑐471𝑐5835412𝑑𝑓𝑏3𝑑65𝑐74𝑎

The forgery tag value is then verified by performing the decryption process. Decryption is carried out using
the ciphertext input of the forgery target in Table 6, the forgery tag value
0𝑥𝑐𝑏28𝑓𝑓49𝑐79𝑐5𝑑𝑏4361064163𝑓36𝑎𝑒𝑎𝑎, the key, and the nonce. The decryption result confirms that the
forgery tag is valid, and the plaintext is obtained as shown in Table 5. Thus, the forgery attack on PAES-8 was
successful.

5. Analysis
This section describes the analysis of the results of the attack implementation. The factors observed include

the suitability of Algorithm 5 and the required attack complexity. Based on the results of the the attack
implementation, the following conclusions are drawn:
1) At the recovery stage, 𝑆#recovery stage, the recovery of 𝑆#$1 	is performed by solving 2 × 16 = 32 differential

equations using the 16 differential attack trajectories generated by the Cancellation (Δ𝑃* , Δ𝑃+) with a
probability of 2-.	, and 16 differential attack trajectories generated by Cancellation with a probability
cΔ𝑃* , Δ𝑃+d	of 2-%. This is because solving two differential equations using differential attack trajectories
generated by cancellation probabilities 2-. and 2-% cannot determine a single exact solution. Thus, injection
using Δ𝑃* and Δ𝑃+ 	with cancellation probability 2-% must also be performed. This demonstrates a mismatch
with the attack provisions of Sasaki and Wang (2014), which states that injection using Δ𝑃* and Δ𝑃+ 	with
cancellation probability 2-% should only be performed when there is no cancellation from injection using
Δ𝑃* and Δ𝑃+ 	with cancellation probability 2-.. Algorithm 5 shows the forgery attack on PAES-8, which has
been adapted to the implementation results.

2) The requirement to inject using Δ𝑃* and Δ𝑃+ 	with cancellation probability 2-% causes an increase in attack
complexity by 16.2#. Thus, the complexity of the forgery attack on PAES-8 becomes 16.2% + 16.2# + 2% 	=
	2!! + 2!" + 2% ≈ 2!".

Buletin Pos dan Telekomunikasi Vol. 22 No.2 (2024) 41-60

59

Algorithm 5 Universal Forgery Attack Adjustment on PAES-8
Input : Plaintext 𝑃 = (𝑃) ∥ 𝑃! ∥ ⋯ ∥ 𝑃!%)
Output : Ciphertext 𝐶 = 𝐶) ∥ 𝐶! ∥ ⋯ ∥ 𝐶!%) and tags 𝑇

1. Query the first 15 plaintext blocks of the target 𝑃	 = 	 (𝑃) ∥ 𝑃! ∥ ⋯ ∥ 𝑃!%) and get the key stream
𝑅), 𝑅!, …	, 𝑅!%.

2. 𝒇𝒐𝒓	𝑝𝑜𝑠𝑖𝑠𝑖 = 1	𝒕𝒐	16	𝒅𝒐
3. 𝒇𝒐𝒓	𝑘 = 1	𝒕𝒐	2'𝒅𝒐
4. Select a different plaintext Δ𝑃+,	with 1 byte active at position and find Δ𝑃-, that corresponds.
5. Query (𝑃)⊕Δ𝑃+, ∥ 𝑃!⊕Δ𝑃-, ∥ 𝑃" ∥ ⋯ ∥ 𝑃!%) and get the key stream 𝑅), , …	, 𝑅!%, .	 	
6. Check if the difference 𝑅'⊕𝑅', can produce 𝑅'⊕𝑅', ⊕𝑅#⊕𝑅#, with 𝐴𝐸𝑆).
7. Check the same properties on the next 4 rounds.
8. Keep the pairs that satisfy 6 and 7.
9. 𝒆𝒏𝒅	𝒇𝒐𝒓
10. 𝒇𝒐𝒓	𝑙 = 1	𝒕𝒐	2#	𝒅𝒐
11. Select a different plaintext Δ𝑃+0	with 1 byte active at position and find Δ𝑃-0 that corresponds.
12. Query (𝑃)⊕Δ𝑃+0 ∥ 𝑃!⊕Δ𝑃-0 ∥ 𝑃" ∥ ⋯ ∥ 𝑃!%) and get the key stream 𝑅)0 , …	, 𝑅!%0 .	
13. Check if the difference 𝑅'⊕𝑅'0 can produce 𝑅'⊕𝑅'0 ⊕𝑅#⊕𝑅#0 with 𝐴𝐸𝑆).
14. Check the same properties on the next 4 rounds.
15. Keep the pairs that satisfy 13 and 14.
16. 𝒆𝒏𝒅	𝒇𝒐𝒓
17. Restore the byte at the position of the state word 𝑆# on loop 0.
18. 𝒆𝒏𝒅	𝒇𝒐𝒓
19. Recover 𝑆' on rounds 8, 9, 10, 11, and 12.
20. 𝒇𝒐𝒓	𝑘 = 1	𝒕𝒐	2'	𝒅𝒐
21. Select the difference Δ𝑃+,	with 1 byte active at position and find Δ𝑃-, that corresponds.
22. Query (𝑃) ∥ 𝑃! ∥ 𝑃"⊕Δ𝑃+, ∥ 𝑃$⊕Δ𝑃-, ∥ ⋯ ∥ 𝑃!%) and get the key stream 𝑅), , …	, 𝑅!%, .	
23. Check if the difference 𝑅.⊕𝑅., can produce 𝑅.⊕𝑅., ⊕𝑅!)⊕𝑅!), with 𝐴𝐸𝑆).
24. Check the same properties on the next 4 rounds.
25. Save the pairs that satisfy 23 and 24.
26. 𝒆𝒏𝒅	𝒇𝒐𝒓
27. Recover 𝑆' on laps 13 and 14.
28. Determine all states in round 8.
29. Continue the rest of the transformation and generate the tag value.

6. Conclusion
This study successfully implemented and evaluated a forgery attack on the PAES-8 encryption scheme, based

on the theoretical concept proposed by Sasaki and Wang. Our findings reveal that the attack cannot be executed
without significant modifications, such as injecting differential plaintext pairs with high-probability outputs in
the AES DDT. These modifications substantially increase the attack's complexity, indicating that PAES-8 may
offer greater resistance to forgery attacks than initially anticipated.

From a practical perspective, this research provides valuable insights into the limitations of theoretical attacks
and highlights the challenges of applying such attacks to real-world encryption schemes. These findings are
significant for researchers and cryptography practitioners, emphasizing the need for more comprehensive
methods to analyze the security of authenticated encryption schemes.

Furthermore, this study has practical implications for the future design of encryption schemes. The additional
complexity identified suggests that encryption schemes should be rigorously tested beyond theoretical scenarios
to ensure robustness in real-world environments. In the long term, these findings can guide the industry toward
improving cryptographic designs to better withstand emerging threats.

However, the study also acknowledges its limitations. Our implementation focused on the nonce-misuse
model, and further research is needed to evaluate PAES-8 under the nonce-respecting model to gain a more
comprehensive understanding of the scheme's resilience. Additionally, similar attacks should be applied to other

Practical Evaluation and Complexity Analysis of Forgery Attacks on (Susila Windarta and Imas Purbasari)

60

authenticated encryption schemes to determine whether the additional complexity observed in this study is a
common phenomenon in modern cryptography.

7. Acknowledgements
The authors would like to express their sincere gratitude to Politeknik Siber dan Sandi Negara for their

invaluable support and resources, which were essential to the successful completing of this research. The
guidance and facilities provided by the institution significantly enhanced the depth and quality of this study. We
are also grateful for the collaborative environment and academic encouragement offered by the faculty and staff,
which fostered the innovation and rigor required for this work.

References
Aumasson, J.-P., Jovanovic, P., & Neves, S. (2015). NORX8 and NORX16: Authenticated Encryption for Low-End Systems.

https://eprint.iacr.org/2015/1154
Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T., Sasaki, Y., Sim, S. M., & Todo, Y. (2021). GIFT-COFB v1.1.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T., & Yasuda, K. (2021). PHOTON-Beetle Authenticated Encryption and Hash Family.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
Bellare, M., & Namprempre, C. (2008). Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. Journal of

Cryptology, 21, 469–491. https://doi.org/10.1007/s00145-008-9026-x
Bernstein, D. (2013). CAESAR: Call for Submissions.
Bhaumik, R., & Nandi, M. (2017). Improved Security for OCB3. https://eprint.iacr.org/2017/845
Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin, T., & Schrottenloher, A. (2020). Saturnin: a suite of lightweight symmetric

algorithms for post-quantum security. IACR Transactions on Symmetric Cryptology, 2020(Special Issue 1), 160–207.
https://doi.org/10.13154/TOSC.V2020.IS1.160-207

Charlton, E. (2024). Cybersecurity: Rising Threats and System Safety. World Economic Forum Agenda.
https://www.weforum.org/agenda/2024/01/cybersecurity-cybercrime-system-safety/

Choi, W., Hwang, S., Lee, B., & Lee, J. (2024). ZLR: a fast online authenticated encryption scheme achieving full security. Designs, Codes and
Cryptography. https://doi.org/10.1007/s10623-024-01434-6

Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., & Van Keer, R. (2020). Xoodyak, a lightweight cryptographic scheme. IACR Transactions on
Symmetric Cryptology, 2020(Special Issue 1), 60–87. https://doi.org/10.13154/TOSC.V2020.IS1.60-87

Dobraunig, C., Mendel, F., Eichlseder, M., & Schläffer, M. (2021). Ascon v1.2 Submission to NIST (p. 52).
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

Jean, J., Nikolić, I., Peyrin, T., & Seurin, Y. (2021). The Deoxys AEAD Family. Journal of Cryptology, 34. https://doi.org/10.1007/s00145-021-09397-w
Jean, J., Nikolic, I., Sasaki, Y., & Wang, L. (2016). Practical forgeries and distinguishers against PAES. IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, 99, 39–48. https://doi.org/10.1587/transfun.E99.A.39
Jimale, M. A., Z’aba, M. R., Kiah, M. L. B. M., Idris, M. Y. I., Jamil, N., Mohamad, M. S., & Rohmad, M. S. (2022). Authenticated Encryption Schemes:

A Systematic Review. IEEE Access, 10, 14739–14766. https://doi.org/10.1109/ACCESS.2022.3147201
Liu, F., & Liu, F. (2017). Universal Forgery with Birthday Paradox: Application to Blockcipher-based Message Authentication Codes and Authenticated

Encryptions. IACR Cryptology EPrint Archive, 2017, 653. https://eprint.iacr.org/2017/653.pdf
NIST. (2001). Advanced Encryption Standard (AES) (Issue FIPS PUB 197). https://csrc.nist.gov/pubs/fips/197/final
Sasaki, Y., & Wang, L. (2014). A Practical Universal Forgery Attack against PAES-8 (p. 218). Citeseer.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.4356&rep=rep1&type=pdf
Schroé, W. (2015). Cryptanalysis of Submission to the CAESAR Cryptographic Competition iFeed. https://www.esat.kuleuven.be/cosic/publications/thesis-

262.pdf
Statista. (2024). Cost of cybercrime worldwide forecast. https://www.statista.com/forecasts/1280009/cost-cybercrime-worldwide
Van Tilborg, H. C., & Jajodia, S. (Eds.). (2011). Encyclopedia of Cryptography and Security (2nd ed.). Springer Science+Business Media, LLC.

https://doi.org/10.1007/978-1-4419-5906-5
Wu, H., & Preneel, B. (2013). AEGIS: A Fast Authenticated Encryption Algorithm. https://eprint.iacr.org/2013/695
Ye, D., Wang, P., Hu, L., Wang, L., Xie, Y., Sun, S., & Wang, P. (2014). Parallelizable Authenticated Encryption Schemes based on AES Round Function.

http://competitions.cr.yp.to/round1/paesv1.pdf

