Hyperparameter Optimization of Random Forest Algorithm to Enhance Performance Metric Evaluation of 5G Coverage Prediction

Main Article Content

Hajiar Yuliana
Iskandar
Hendrawan
Sofyan Basuki
M. Reza Hidayat
Atik Charisma
Hurianti Vidyaningtyas

Abstract

Utilizing of 5G technology has become a major focus in the development of more advanced and efficient telecommunications networks. In this context, 5G coverage prediction becomes an important aspect in network planning to ensure optimal user experience. In this study, we explore the use of Random Forest algorithm to predict 5G coverage, with special emphasis on the hyperparameter optimization process to improve model performance. We conduct experiments with various hyperparameter combinations, including 'max_depth', 'max_features', 'min_samples_leaf', 'min_samples_split', and 'n_estimators', using hyperparameter optimization techniques. The results show that by paying attention to the optimal combination of hyperparameters, we managed to significantly improve the performance of the model. The optimized model produces a Minimum Root Mean Squared Error (RMSE) of 0.6, which is much better than the Random Forest model without hyperparameter optimization which has an RMSE of 1.14. The result of this study confirms the importance of the hyperparameter optimization process in improving the accuracy and consistency of the Random Forest model for 5G coverage prediction. The results have important implications in supporting the development of a successful 5G network infrastructure in the future.

Article Details

Section
Telecommunication

References

Ahmad Fauzi, M. F., Nordin, R., Abdullah, N. F., Alobaidy, H. A. H. H., Fauzi, M. F. A., Nordin, R., Abdullah, N. F., Alobaidy, H. A. H. H., Ahmad Fauzi, M. F., Nordin, R., Abdullah, N. F., & Alobaidy, H. A. H. H. (2022). Mobile Network Coverage Prediction Based on Supervised Machine Learning Algorithms. IEEE Access, 10, 55782–55793. https://doi.org/10.1109/ACCESS.2022.3176619

Barcellos, A. L., Duarte, J. C., & Mendes, A. C. (2023). Radiofrequency Signal Levels Predition Using Machine Learning Models. IEEE Latin America Transactions, 21(2), 351–357. https://doi.org/10.1109/TLA.2023.10015229

Chen, M., Châteauvert, M., & Ethier, J. (2022). Extending Machine Learning Based RF Coverage Predictions to 3D. 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings, 205–206. https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887000

Chiroma, H., Nickolas, P., Faruk, N., Alozie, E., Olayinka, I.-F. Y., Adewole, K., Abdulkarim, A., Oloyede, A., Sowande, O., Garba, S., Usman, A. D., Taura, L. S., & Adediran, Y. (2023). Large Scale Survey for Radio Propagation in Developing Machine Learning Model for Path Losses in Communication Systems. Scientific African, null, null. https://doi.org/10.1016/j.sciaf.2023.e01550

Erunkulu, O. O., Zungeru, A. M., Lebekwe, C., & Chuma, J. (2020). Cellular Communications Coverage Prediction Techniques: A Survey and Comparison. IEEE Access, 8, 113052–113077. https://doi.org/10.1109/ACCESS.2020.3003247

Fauzi, M. F. A., Nordin, R., Abdullah, N. F., Alobaidy, H. A. H., & Behjati, M. (2023). Machine Learning-Based Online Coverage Estimator (MLOE): Advancing Mobile Network Planning and Optimization. IEEE Access, 11(November 2022), 3096–3109. https://doi.org/10.1109/ACCESS.2023.3234566

He, R., Gong, Y., Bai, W., Li, Y., & Wang, X. (2020). Random Forests Based Path Loss Prediction in Mobile Communication Systems. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), null, 1246–1250. https://doi.org/10.1109/ICCC51575.2020.9344905

Lee, A. J. and M. S. (2023). Comparative Performance Evaluation of State-of-the-Art Hyperparameter Optimization Frameworks. The Transactions of the Korean Institute of Electrical Engineers, 72(5), 607–620.

Mohammadjafari, S., Roginsky, S., Kavurmacioglu, E., Cevik, M., Ethier, J., & Bener, A. B. (2020). Machine Learning-Based Radio Coverage Prediction in Urban Environments. IEEE Transactions on Network and Service Management, 17(4), 2117–2130. https://doi.org/10.1109/TNSM.2020.3035442

Moraitis, N., Tsipi, L., Vouyioukas, D., Gkioni, A., & Louvros, S. (2021). Performance evaluation of machine learning methods for path loss prediction in rural environment at 3.7 GHz. Wireless Networks, 27, 4169–4188. https://doi.org/10.1007/s11276-021-02682-3

Muniraju, G., Kailkhura, B., Thiagarajan, J. J., Bremer, P. T., Tepedelenlioglu, C., & Spanias, A. (2021). Coverage-Based Designs Improve Sample Mining and Hyperparameter Optimization. IEEE Transactions on Neural Networks and Learning Systems, 32(3), 1241–1253. https://doi.org/10.1109/TNNLS.2020.2982936

Neptune.ai. (n.d.). How to Use Google Colab for Deep Learning – Complete Tutorial. Retrieved September 5, 2023, from https://neptune.ai/blog/how-to-use-google-colab-for-deep-learning-complete-tutorial

Samidi, F. S., Mohamed Radzi, N. A., Mohd Azmi, K. H., Mohd Aripin, N., & Azhar, N. A. (2022). 5G Technology: ML Hyperparameter Tuning Analysis for Subcarrier Spacing Prediction Model. Applied Sciences (Switzerland), 12(16). https://doi.org/10.3390/app12168271

Sotiroudis, S. P., Goudos, S. K., & Siakavara, K. (2019). Neural Networks and Random Forests: A Comparison Regarding Prediction of Propagation Path Loss for NB-IoT Networks. 2019 8th International Conference on Modern Circuits and Systems Technologies, MOCAST 2019, August, 1–4. https://doi.org/10.1109/MOCAST.2019.8741751

Sotiroudis, S. P., Goudos, S. K., & Siakavara, K. (2020). Feature Importances: A Tool to Explain Radio Propagation and Reduce Model Complexity. Telecom, 1(2). https://doi.org/10.3390/telecom1020009

Sousa, M., Alves, A., Vieira, P., Queluz, M., & Rodrigues, A. (2021). Analysis and Optimization of 5G Coverage Predictions Using a Beamforming Antenna Model and Real Drive Test Measurements. IEEE Access, 9, 101787–101808. https://doi.org/10.1109/ACCESS.2021.3097633

Sun, Y., Zhang, J., Zhang, Y., Yu, L., Yuan, Z., Liu, G., & Wang, Q. (2022). Environment Features-Based Model for Path Loss Prediction. IEEE Wireless Communications Letters, 11(9), 2010–2014. https://doi.org/10.1109/LWC.2022.3192516

Wang, C. X., Bian, J., Sun, J., Zhang, W., & Zhang, M. (2018). A survey of 5g channel measurements and models. IEEE Communications Surveys and Tutorials, 20(4), 3142–3168. https://doi.org/10.1109/COMST.2018.2862141

Won, J., Shin, J., Kim, J.-H., & Lee, J.-W. (2023). A Survey on Hyperparameter Optimization in Machine Learning. The Journal of Korean Institute of Communications and Information Sciences, 48(6), 733–747. https://doi.org/10.7840/kics.2023.48.6.733

Yuhana, U. L., Purwarianti, A., & Imamah, I. (2022). Tuning Hyperparameter pada Gradient Boosting untuk Klasifikasi Soal Cerita Otomatis. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(1), 134. https://doi.org/10.26418/jp.v8i1.50506

Yuliana, H., Iskandar, & Hendrawan. (2023). A Review of Coverage Prediction in Mobile Communication System using Machine Learning Algorithm. 2023 17th International Conference on Telecommunication Systems, Services, and Applications (TSSA). https://doi.org/10.1109/TSSA59948.2023.10367027

Yuliana, H., Iskandar, & Hendrawan. (2024). Comparative Analysis of Machine Learning Algorithms for 5G Coverage Prediction: Identification of Dominant Feature Parameters and Prediction Accuracy. IEEE Access, 12(January), 18939–18956. https://doi.org/10.1109/ACCESS.2024.3361403