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Utilizing Fifth-Generation (5G) technology has become crucial for developing 
advanced and efficient telecommunications networks. Accurate 5G coverage prediction 
is essential for optimal network planning and ensuring high-quality user experiences. 
This study investigates the use of the Random Forest algorithm for 5G coverage 
prediction, with a specific focus on hyperparameter optimization to enhance model 
performance. A comprehensive measurement campaign was conducted in Bandung 
City, Indonesia, and data was collected through the drive test method. The dataset 
underwent rigorous preprocessing, including data cleaning, normalization, and feature 
engineering, to ensure quality and consistency. Hyperparameter optimization was 
performed using Grid Search, systematically evaluating combinations of 
''n_estimators'', ''max_depth'', ''min_samples_split'', ''min_samples_leaf'', and 
''max_features''. The optimized model significantly reduced the Root Mean Squared 
Error (RMSE) from 1.14 to 0.66, a statistically significant improvement confirmed by 
paired t-tests and confidence intervals. The study's findings demonstrate that 
hyperparameter optimization substantially enhances the model's accuracy and 
reliability, outperforming previous approaches in the literature. These results have 
significant practical implications for the telecommunications industry, enabling more 
precise coverage predictions, improved resource allocation, and enhanced network 
efficiency. The study also highlights the critical role of systematic hyperparameter 
tuning in developing robust machine-learning models for 5G network applications. 
Future research should explore advanced optimization techniques and validate the 
model in diverse real-world settings to further generalize the findings. This work 
contributes to the ongoing advancement of 5G technology, offering valuable insights 
for both academic research and industry practice. 
 

 

1. Introduction   

The use of Fifth-Generation (5G) networks in various fields such as telecommunications, transportation, 
healthcare, and industry is increasing. One of the main challenges in 5G network implementation is ensuring 
optimal signal coverage to support high-quality of service. 5G coverage prediction becomes crucial in network 
planning to ensure the availability of reliable and quality services for users (Ahamed & Faruque, 2021) . 

Calculation and prediction of coverage or coverage of received receiving signal power is very important in 
planning, designing, and operating 5G mobile networks. By making accurate predictions, mobile network 
operators can identify areas that require network infrastructure improvements, as well as optimize network 
resources to raise the standard of the services rendered. However, the prediction of received receiver signal 
power in 5G cellular networks is more complex than in previous cellular technologies due to higher 
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frequencies, wider bandwidth, and higher network architecture complexity. Therefore, research on methods for 
predicting the strength of the received receiver signal in 5G mobile networks is fundamental (Yuliana et al., 
2023). 

In general, there are several methods available to predict coverage in wireless communication systems, 
including empirical models, physical models, and hybrid models.  Empirical models are based on statistical 
analysis and mathematical equations based on measured data and provide a simple and fast method to estimate 
coverage area. Physical models, on the other hand, are based on electromagnetic wave propagation and provide 
a more accurate representation of the coverage area by considering various factors that affect signal 
propagation, including terrain, buildings, and other obstructions. Hybrid models combine the advantages of 
both empirical and physical models to offer a more accurate and efficient method of coverage prediction. These 
models use a combination of measured data and theoretical models to provide better predictions of signal 
strength and coverage area. This group is commonly known as the traditional models (C. X. Wang et al., 2018).  

These traditional models have been used for decades for various wireless communication needs, such as 
coverage prediction and even propagation path loss modeling. Traditional coverage prediction methods also 
often rely on complex and time-consuming modeling. However, the adoption of machine learning in various 
analysis demands in wireless communication systems is motivated by the shortcomings of existing models, 
including their ineffectiveness, lack of robustness, and insufficient efficiency. By training the algorithm on 
measured data, machine learning methods can be used to estimate coverage based on several aspects that affect 
signal strength (Chiroma et al., 2023).  

From various studies that have been conducted related to the use of machine learning algorithms in 
coverage prediction, some algorithms are recommended to be used specifically for predicting coverage. From 
various studies that have been conducted related to the use of machine learning algorithms in coverage 
prediction, some algorithms are recommended to be used specifically for predicting coverage. The algorithm is 
Random Forest. The Random Forest algorithm is one of the supervised learning algorithms in the field of 
machine learning that belongs to the ensemble learning category. The basic concept of Random Forest is to 
combine predictions from utilizing several decision trees to increase performance and forecast accuracy (He et 
al., 2020). 

However, with advances in machine learning, 5G network coverage prediction can be performed more 
efficiently and accurately. However, to achieve optimal performance from machine learning models, 
hyperparameter optimization is essential. Hyperparameter optimization is a critical process in model building in 
machine learning and neural networks (Won et al., 2023). This is important because hyperparameters are 
parameters that are not learned by the model itself during the training process but must be set before the 
training process begins. Hyperparameters can have a significant impact on model performance. Choosing 
optimal hyperparameters can result in more accurate and more stable models (Yuhana et al., 2022). 

From various studies (Afifi et al., 2022; Fauzi et al., 2023; Sousa et al., 2021; Yuliana et al., 2024), 
Random Forest always gets the optimal algorithm performance assessment and yields low Root Mean Squared 
Error (RMSE) values in relation to alternative machine learning algorithms for every coverage prediction 
procedure. However, from various studies that have been done before related to coverage prediction, especially 
using the Random Forest algorithm, we need to find out whether the performance value is optimal or not. 
Therefore, in this study, hyperparameter optimization will be carried out to determine the value of influential 
parameters and can produce optimal performance evaluation results, in particular when predicting coverage. In 
this context, this research aims to optimize the Random Forest model's hyperparameters to predict 5G coverage. 
By performing proper hyperparameter optimization, it is expected that the model can provide more accurate 
and efficient coverage prediction, thus enabling better 5G network planning and better user experience. 
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In this research, we will conduct a comprehensive measurement campaign in Bandung City, Indonesia, 
using the drive test method to collect data. The collected data will undergo rigorous preprocessing, including 
data cleaning, normalization, and feature engineering. We will then employ Grid Search for hyperparameter 
optimization of the Random Forest model, systematically evaluating combinations of ‘n_estimators’, 
‘max_depth’, ‘min_samples_split’, ‘min_samples_leaf’, and ‘max_features’. The performance of the optimized 
model will be compared to the default model and evaluated using metrics such as RMSE. This study aims to 
demonstrate the significant improvements in 5G coverage prediction achieved through hyperparameter 
optimization and provide valuable insights for future research and practical applications in network planning 
and optimization. 

2. Literature review 

In general, there are several methods available to predict coverage in wireless communication systems, 
including empirical models, physical models, and hybrid models.  Empirical models are based on statistical 
analysis and mathematical equations based on measured data and provide a simple and fast method to estimate 
coverage area. On the other hand, physical models, which take into account several elements that affect signal 
propagation, such as terrain, buildings, and other obstructions, offer a more realistic picture of the coverage 
area because they are based on electromagnetic wave propagation. Hybrid models provide a more precise and 
effective way to anticipate coverage by combining the benefits of physical and empirical models. To improve 
forecasts of signal strength and coverage area, these models combine theoretical models with measured data. 
We refer to this group as classic models (Erunkulu et al., 2020). 

 
2.1 Coverage Prediction in Cellular Network 

Many studies have been conducted to predict coverage with this conventional approach. Research has 
likely been conducted ever since The Second Generation (2G) cellular technology became available. Until it 
eventually advanced to the point where Fourth-Generation (4G) and 5G technologies are now available. Only 
papers or articles discussing coverage prediction in 4G and 5G technologies are allowed to be submitted to this 
paper. Generally speaking, this conventional approach to cellular communication coverage prediction makes 
use of current propagation models as an analysis tool to forecast coverage in a region. However, the 
weaknesses of the traditional model, such as poor efficiency, inconsistent performance, and ineffectiveness, 
encourage the use of machine learning in various analysis requirements for non-linear communication systems 
(Erunkulu et al., 2020). 

Machine learning methods, by training algorithms on measured data, can estimate coverage based on 
several aspects that affect signal strength. Various studies have been conducted on using machine learning 
algorithms for coverage prediction, with the Random Forest algorithm emerging as a recommended method due 
to its high accuracy and performance (Yuliana et al., 2023). Most articles and papers discuss the use of machine 
learning algorithms in coverage prediction in 4G and 5G cellular network technologies. However, its 
development has continued to increase until now. This is because the use of machine learning algorithms is 
quite helpful in the coverage prediction process, making it very efficient without reducing the accuracy of the 
resulting prediction results. 

The algorithms used in coverage prediction are diverse. Each algorithm has different performance results 
and prediction accuracy. For example, this paper (Mohammadjafari et al., 2020) tries to apply generalized 
linear models (GLMs), neural networks (NNs), and nearest neighbor (KNN) algorithms in predicting coverage. 
From this study, it was found that of the three Machine Learning (ML) algorithm models tested, the GLM 
model is the recommended ML model because it is easier to enter and analyze data. In addition, based on the 
results it shows that when a large number of samples are used, basic models like GLM and KNN perform better 
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and need less computing power than Multi-Layer Perceptron (MLP) and Deep Neural Network (DNN). 
Unfortunately, the measurement and collection of datasets that only consider the variation of distance between 
Tx and Rx makes the analysis results still need to be reconsidered. In addition, the author of the paper (Chen et 
al., 2022) also tries to use the ML algorithm model for 3D coverage area prediction. The author wants to know 
the accuracy of the coverage prediction generated when using the ML algorithm model. The algorithm model 
used is convolutional neural networks (CNNs). In a paper (Afifi et al., 2022), the author tries to model 
supervised machine learning algorithms where there are several algorithm models included in it, specifically 
Gaussian Process Regression (GPR), Regression Trees (RT), Ensembles of Trees (ET), Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), and Linear Regression (LR). 

  
2.2 Random Forest Algorithm for Coverage Prediction 

The research conducted by (Fauzi et al., 2023) also predicted coverage in cellular network planning using 
the Random Forest algorithm. The author considered many areas in Malaysia that fall under the urban category. 
All measurement conditions and prepared data are thoroughly considered in this study. So, the results of the 
analysis and assessment of the accuracy of the coverage predictions produced really show that the use of the 
random forest algorithm model in this study, accompanied by a complete dataset feature, can produce a 
reasonably low RMSE value when compared to other studies. The RMSE value generated in this work is 
reported to reach 2.65 dB in this study. In comparison to other studies, this figure is significantly smaller. 
Nevertheless, this study is restricted to 4G technology. This algorithm model is also claimed in various studies 
(Afifi et al., 2022; Barcellos et al., 2023; He et al., 2020; Sotiroudis et al., 2019, 2020; Sun et al., 2022) is an 
ML algorithm model that produces better performance and accuracy when compared to other ML algorithm 
models. 

The Random Forest Algorithm is an ensemble approach that boosts prediction accuracy by combining 
numerous whitecaps. In the case of coverage prediction, this algorithm can be used to predict the probability of 
success in the cellular network planning process. Hyperparameter values can influence the performance of this 
model. Adjusting hyperparameters can influence how well the model predicts coverage. The number of features 
considered when dividing a node can improve performance but can also result in overfitting. Thus, finding 
optimal values for these hyperparameters is essential to achieve the best possible performance. Adjusting the 
hyperparameters can also reduce overfitting in the model. Overfitting is a state when the model is too complex 
and adjusts the training data with flaws that are not effective in predicting new data. Hyperparameter 
adjustment can help reduce overfitting by adjusting the complexity of the model according to the available data. 
There are several ways to optimize hyperparameters for Random Forests, including Bayesian Optimization, 
Random search, and Grid search. Random Search chooses hyperparameters at random from a predetermined 
range, whereas Grid Search attempts every conceivable set of hyperparameters. A model with probabilities is 
used in Bayesian optimization to direct the process of finding the optimal hyperparameters. 

 
2.3 Hyperparamater Optimization 

Hyperparameter optimization is a crucial process in machine learning that involves tuning the 
hyperparameters of algorithms to enhance their performance. Hyperparameters are parameters that are set 
before the learning process begins and are not learned during training. They include parameters such as 
learning rate, momentum, weight decay, batch size, and others that influence the behavior of the learning 
algorithm (Xu et al., 2019). Optimizing hyperparameters entails finding the best combination of these 
parameters to enhance the model's predictive accuracy and efficiency (L. Wang et al., 2021). 
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Various methods can be utilized for hyperparameter optimization, such as grid search, random search, 
Bayesian optimization, and heuristic approaches (Jeon et al., 2023). Bayesian optimization, for example, is a 
technique used to automatically learn the optimal hyperparameters of a model based on experimental data 
(Neumann-Brosig et al., 2020). This method has been successfully applied to optimize hyperparameters for 
various machine learning algorithms, including deep neural networks, to enhance their performance (Swersky, 
2014). Furthermore, hyperparameter optimization is essential for ensuring the optimal performance of machine 
learning algorithms (Morales-Hernández et al., 2021). It is a critical step in fine-tuning models and achieving 
optimal results in diverse applications, such as image classification, toxicity classification, and environmental 
studies (Lio et al., 2020; L. Wang et al., 2021). While researchers often rely on trial-and-error methods to 
optimize hyperparameters, advanced techniques like Bayesian optimization and heuristic approaches have been 
demonstrated to be more effective in determining the best hyperparameter settings (López-Flores et al., 2023). 

The importance of using hyperparameter optimization in prediction using machine learning algorithms is 
also discussed in several studies related to telecommunications systems. In (Muniraju et al., 2021), 
hyperparameter optimization is one of the main areas discussed in this paper. The proposed coverage-based 
design and algorithm aim to improve hyperparameter optimization for supervised learning. This paper shows 
that the coverage-based design outperforms existing exploratory sampling methods in hyperparameter 
optimization. It shows that the choice of hyperparameters can significantly affect the performance of machine 
learning models. Experimental results in the suggested strategy regularly outperform current techniques in 
hyperparameter optimization for supervised learning. This highlights the importance of considering 
hyperparameters in finding practical solutions in large search spaces. 

The development of hyperparameter optimization is also discussed in the paper (Lee, 2023). 
Hyperparameter optimization (HPO) is a systematic search procedure that chooses the ideal combination of 
hyperparameters for machine learning (ML) and deep learning models. This research evaluates advanced HPO 
frameworks, including Bayesian optimization (BO), Optuna, HyperOpt, and Keras Tuner, to optimize ML 
classifiers and convolutional neural network (CNN) architectures. The goal is to find the best hyperparameter 
settings that improve the performance of ML and CNN models in classification tasks.  

In addition, according to research conducted  (Samidi et al., 2022), Hyperparameter tuning optimization 
plays a vital role in this study as it aims to improve the performance of machine learning (ML) models for 
subcarrier spacing prediction in 5G technology. This research focuses on identifying optimal hyperparameter 
settings for four ML models: k nearest neighbors, classification and regression trees, random forests, and 
support vector machines. By tuning the hyperparameters, the researchers aim to improve the accuracy of the 
prediction models, enabling effective decision-making in resource optimization for 5G communication systems. 
The study emphasizes the importance of understanding how ML models respond to the system in use, as 
optimal hyperparameter settings directly impact model performance. 

Random Forest (RF) involves various hyperparameters, such as the number of observations drawn for each 
tree, the number of variables considered for each split, and the minimum number of samples required in a node 
(Probst et al., 2019). Techniques like GridSearch and Bayesian optimization have been employed for 
hyperparameter tuning in RF models (Alaoui et al., 2023; Elshewey et al., 2023; Ghule, 2023);. Bayesian 
optimization, for instance, has been used to optimize hyperparameters for different machine learning models, 
including RF, to improve their performance (Elshewey et al., 2023). The optimization of hyperparameters in 
RF models has been applied in various domains such as healthcare for disease diagnosis (Kumar & Ratnoo, 
2021), geotechnical engineering for soil strength estimation (Pham et al., 2020), and even in predicting leakage 
current alarms (Yokoyama & Yamaguchi, 2020). These applications demonstrate the versatility and importance 
of hyperparameter optimization in enhancing the effectiveness of RF models across different fields. 
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From the various studies related to hyperparameter optimization, we can improve the accuracy of 5G 
coverage prediction by optimizing the hyperparameters. This helps ensure that the resulting model can provide 
a more accurate estimation of how well the 5G signal can reach a particular area. In addition, the 
hyperparameter optimization process helps reduce the risk of overfitting, where the model overly "memorizes" 
the training data and fails to generalize to new data. By setting the hyperparameters wisely, we can produce a 
more generalized and reliable model. By finding the optimal combination of hyperparameters, we can come up 
with a more efficient solution for planning 5G networks. This can help network operators better allocate 
resources and improve overall network efficiency. Hyperparameter optimization in 5G coverage prediction is 
an essential step in ensuring that the model used can provide optimal and relevant results to the needs of 
applications in the field. This is a crucial aspect in the development of 5G technology that can provide 
maximum benefits to users and network operators. 

 
3. Method 

In this section, it will be presented regarding several processes and methods used in this study. The method 
used is related to training some training data prepared from various parameter features related to coverage 
prediction, especially in 5G networks. The prediction output that will be generated is the form of SS-RSRP or 
Synchronization Signal-reference signal received power (SS-RSRP). 

Generating an accurate Synchronization Signal-reference signal received power (SS-RSRP) prediction 
model requires resolving the receiver (Rx) location with respect to the transmitter (Tx) antenna location. In 
addition, the characteristics of the operational environment and the signal propagation state must be explained 
by the features. This allows for a more accurate prediction of the amount of signal attenuation experienced 
prior to arriving at the Rx location.  

Furthermore, after the prediction process is carried out, we need to evaluate the resulting prediction results 
in general. This is done to assess how well the Random Forest algorithm we use can predict coverage. This 
provides insight into how accurate and reliable the resulting predictions are, which is essential in decision-
making relating to 5G network planning. 

3.1. Data Collection and Dataset Preparation 

In this stage, the data that will be used to perform 5G coverage prediction is prepared. The preprocessing 
process includes steps such as data cleaning, removal of missing values, feature engineering, and data 
normalization if required. These steps aim to ensure the data is ready to be used to train the Random Forest 
model. 

The dataset that was used in this study was collected from a comprehensive measurement campaign 
carried out in Bandung City, West Java, Indonesia's Batununggal Area, a densely populated area. This region 
consists of ten g-NodeB, with three transceiver BS Antennas per g-NodeB. The Batununggal location was 
chosen since it is already heavily covered by 5G networks, despite the fact that the 5G network in Indonesia is 
still in its early stages of development. This pioneering nature of the project adds a unique dimension to our 
study. Figure 1 displays the results of the driving test in the Batununggal Area.  

The samples in this study were taken using the drive test method. A driving test is a data collection method 
performed by driving a vehicle through a specific route while recording various network parameters using a 
prepared device. In the context of this research, a driving test is conducted by driving a vehicle through a 
predetermined route, where the G-NetTrack Pro application is activated to record real-time network data. The 
drive test process begins with preparations that include setting up the smartphone and app, as well as 
determining a representative route for the 5G network coverage under study. During the execution, the G-
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NetTrack Pro app will collect data related to signal strength, network quality, and other performance metrics 
along the route. 

Specific hardware and software were used to perform the drive test process. In this study, specific 
hardware and software were used to collect drive test data to evaluate 5G network coverage. The hardware used 
is a Xiaomi Poco F3 (M2012K11AG) smartphone with category 20 that supports the latest 3GPP release 
standard, namely Release 18 (5G NR). The selection of the Xiaomi Poco F3 is based on its ability to support 
the latest 5G NR network standard, thus enabling accurate and relevant data collection. For software, this study 
used the G-NetTrack Pro application, a non-rooted application that serves as a wireless network monitoring and 
driving test tool. The app is capable of measuring various important network parameters, such as signal 
strength, quality of service, and throughput performance during drive tests. 

The collected data is then exported from the G-NetTrack Pro application for further analysis. This data 
analysis was conducted to evaluate the coverage and quality of the 5G network, as well as to optimize the 
hyperparameters of the Random Forest algorithm used in this study. This drive-test method provides an 
accurate picture of network performance in the field and allows the identification of areas with coverage or 
quality issues that need improvement. The data collected also supports the development of more accurate 
prediction models for 5G network coverage.  

The purpose of the measurement campaign is to obtain a test dataset in order to prepare the dataset and 
train the model. All the steps to prepare the dataset must be performed after the drive test data is cleaned so that 
other parameters can also be extracted. After completing the drive test, the collected data was exported from the 
G-NetTrack Pro application. The raw data included time-stamped records of various network parameters. The 
exported data was then cleaned and preprocessed. The preprocessing steps included data cleaning, handling 
missing values, normalization, and feature engineering. This involved removing any outliers or erroneous data 
points that could skew the results. Missing values were handled through imputation techniques to ensure the 
dataset was complete and ready for analysis. The preprocessed data was then structured into a format suitable 
for model training.  

In data cleaning, outliers were identified using statistical methods such as Z-score and Interquartile Range 
(IQR). Data points with Z-scores beyond ±3 or those outside the 1.5*IQR were considered outliers and 
removed to prevent skewing the model training. Data points that did not meet logical consistency checks (e.g., 
negative signal strengths unrealistic geographical coordinates) were flagged and removed. This step ensured 
that only valid data points were used for training. Missing values were handled using imputation techniques. 
For numerical data, mean or median imputation was applied depending on the distribution of the data. The 
model was used for the imputation of categorical data. These methods ensured that the dataset remained 
complete without introducing significant bias. The imputed values were validated by comparing the distribution 
of the imputed data with the original data to ensure consistency and plausibility. Numerical features were 
normalized using Min-Max scaling to bring all values into the range [0, 1]. This step is crucial for machine 
learning algorithms like Random Forest, which can be sensitive to the scale of input data. Additionally, Z-score 
standardization was applied to features where relative differences in values were significant. This process 
transformed the data to have a mean of 0 and a standard deviation of 1. 

New features were derived from the raw data to enhance the model's predictive power. A correlation 
matrix was used to identify and remove highly correlated features, reducing redundancy and enhancing model 
performance. Features with low variance were also removed as they provided little information for the model. 
Some of the metrics that may be determined from the base station specs are antenna type, base station antenna 
height at ASL (Above Sea Level), degree of tilting, base station position coordinate, and antenna direction. 
These parameters can be used to build the training model of the dataset as well as to determine other 
parameters. Moreover, as shown in Figure (1), drive test results gathered in the Batununggal region are assorted 
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and processed in CSV file format. The dataset training model parameters data will be the results of the 
processing, which includes the driving test. The data that will be used to train the model of the dataset include 
the ASL antenna height of the UE (User Equipment), UE position coordinate, and 2D distance between 
eNodeB and the UE. The generated parameters are additional aspects that we can determine using the base 
station specifications and checking with the drive test results. These include the receiver's horizontal and 
vertical distance from the base station antenna boresight, azimuth offset angle, tilting offset angle, and 
elevation angle from g-NodeB to the UE position. 

The preprocessed data was then structured into a suitable format for model training, incorporating key 
performance metrics such as RMSE, MSE, and R-squared. The parameters extracted from the driving test 
included antenna type, base station antenna height at ASL (Above Sea Level), degree of tilting, base station 
position coordinates, and antenna direction. These parameters were used to build the training model of the 
dataset. Additional parameters derived from the base station specifications and drive test results included the 
receiver's horizontal and vertical distance from the base station antenna, boresight azimuth offset angle, tilting 
offset angle, and elevation angle from g-NodeB to the UE position. 

 

 
Figure 1. RSRP Drive Test Result in Batununggal 

3.2. Model Training and Validation 

In this study, we used Google Collaboratory to train and verify the ML-based model for predicting SS-
RSRP.  Google Colab, also known as Collaboratory by Google, is a runtime environment that is built on 
Jupyter notebooks and lets you run programs entirely on the cloud (Neptune.ai, n.d.). Additionally, it may be 
used to test simple machine learning models, acquire expertise, and cultivate an intuitive understanding of 
several aspects of deep learning, encompassing model complexity, preprocessing data, hyperparameter 
adjustment, and overfitting. 

Google Colab is a cloud-based platform that provides free access to powerful computational resources, 
including GPUs and CPUs. This accessibility is crucial for researchers who may not have access to high-
performance computing infrastructure. By leveraging Google Colab, we were able to train complex machine 
learning models without incurring significant costs, making it a cost-effective solution for our research. The 
platform offers substantial computational power, which is essential for training and fine-tuning machine 
learning models, particularly those involving large datasets and complex algorithms like Random Forest. The 
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availability of GPUs and TPUs accelerates the training process, allowing for quicker iterations and more 
efficient experimentation. This flexibility is a crucial advantage when conducting extensive hyperparameter 
optimization, as it reduces the time required to achieve optimal model performance. The platform undergoes 
regular updates and maintenance to ensure stability and security. In our research, we experienced consistent 
performance and minimal downtime, which underscores the platform's reliability for serious research projects. 

Additionally, the integration with Google Drive allows for automatic saving and backup of work, further 
enhancing data security and reliability. Google Colab is specifically designed to support machine learning 
research. It comes pre-installed with popular ML libraries such as TensorFlow, Keras, and Scikit-learn, 
reducing the setup time and complexity. The ease of use, combined with comprehensive documentation and a 
supportive community, makes Google Colab an ideal choice for both novice and experienced researchers. 

The dataset was split into training and testing subsets in order to evaluate each algorithm's predictive 
performance. Cross-validation techniques were employed to avoid overfitting and ensure the reliability of the 
model. Specifically, a 10-fold cross-validation (CV) approach was used, which provides a robust method for 
evaluating model performance. The data is divided automatically by cross-validation, which is instructed to be 
divided into 70% train, 10% validation, and 20% test data. 

The entire dataset was divided into ten equal parts (folds). Each fold contained approximately the same 
proportion of samples. For each of the ten iterations, nine folds were used for training the model, and the 
remaining fold was used for validation. This process was repeated ten times, with each fold being used exactly 
once as the validation set. In each iteration, the Random Forest model was trained on the nine training folds. 
During training, the model parameters were adjusted to minimize the prediction error. After training on the nine 
folds, the model's performance was evaluated on the validation fold. Key metrics such as RMSE, MSE, and R-
squared were calculated to assess the model's accuracy and generalizability. The performance metrics from all 
ten iterations were averaged to obtain a comprehensive measure of the model's performance. This averaging 
helps mitigate the variance due to the specific partitioning of the data and provides a more reliable estimate of 
the model's actual performance. 

By validating the model on different subsets of the data, 10-fold CV reduces the risk of overfitting, 
ensuring that the model generalizes well to unseen data. This method provides a thorough evaluation of the 
model's performance across different subsets of data, offering insights into its stability and robustness. Using 
90% of the data for training and 10% for validation in each iteration ensures a balanced approach, maximizing 
the use of available data for training while still providing a robust validation mechanism. 

After cross-validation, the final model was evaluated on a separate test set that was not used during the 
training or validation phases. This provided an unbiased assessment of the model's performance. The final 
trained model was applied to the test set, and performance metrics were calculated. This step is crucial as it 
simulates the model's behavior on new, unseen data, closely resembling real-world application scenarios.  

These measurements provided a comprehensive analysis of the prediction performance of each method. 
Moreover, we must use Root-mean-square error (RMSE) to assess the trained model's performance. The RMSE 
can measure the average magnitude of the prediction error, with lower values indicating better performance. It 
is essential to examine the statistical error between the expected and observed SS-RSRP values. One statistic 
that is often used to assess the effectiveness of regression prediction models is RMSE, which is displayed in (1) 
(He et al., 2020) 

 

………………………………………………………………………….1) 



Hyperparameter Optimization of Random Forest Algorithm to Enhance Performance Metric Evaluation …(Hajiar Yuliana et al) 

84 
 

where  is the actual value,  is the predicted value, and is the total number of samples. The ML 
model's prediction is better when the RMSE values are less. Predictive models with RMSE values less than 7 
dB are deemed acceptable by (Moraitis et al., 2021), particularly in urban settings. 

3.3. Hyperparameter Optimization 

The most crucial stage in this methodology is the hyperparameter optimization of the Random Forest model. 
There are three main methods for hyperparameter optimization are commonly used: Grid Search, Random 
Search, and Bayesian Optimization. In this study, Grid Search was chosen for its exhaustive and systematic 
approach to exploring the hyperparameter space. 

• Grid Search: This method involves defining a grid of hyperparameter values and 
exhaustively trying every possible combination. Grid Search is advantageous because it 
ensures a comprehensive search, leaving no combination unexplored. This method was 
chosen for its simplicity and thoroughness despite its high computational cost. It is 
particularly effective when the hyperparameter space is moderately sized. 

• Random Search: Unlike Grid Search, Random Search samples hyperparameter combinations 
randomly. This method can be more efficient than Grid Search, especially when the hyperparameter 
space is vast, as it avoids evaluating each possible combination. However, Random Search might 
only notice the optimal combination if the sampling is sufficient. 

• Bayesian Optimization: This advanced method builds a probabilistic model of the objective function 
and uses it to select the most promising hyperparameters to evaluate the actual objective function. 
Bayesian Optimization can be more efficient than both Grid Search and Random Search, 
particularly for high-dimensional and expensive-to-evaluate spaces. However, it is more complex to 
implement and requires more sophisticated tuning. 

Grid Search was selected for this study due to its straightforward implementation and suitability for the 
moderate size of the hyperparameter space considered. This method's systematic nature ensures that all possible 
combinations within the predefined grid are evaluated, providing a clear understanding of the effects of each 
hyperparameter. 

Moreover, we can never explore the various hyperparameter choices manually. Hence, we need to use 
hyperparameter optimization techniques to get the optimal output of the ML model. This study consists of 2 
prediction models, which are the random forest model without parameter tuning, which means that all 
parameters used follow the default settings. At the same time, the second model uses a random forest by 
changing the value of the hyperparameter. Various hyperparameter choices were explored using grid search. 
The parameters tuned included 'n_estimators', 'max_depth', 'min_samples_split', 'min_samples_leaf', and 
'max_features'. The choice of Grid Search allowed for a detailed exploration of the hyperparameter space, 
ensuring that the best combination of parameters was identified. By evaluating every possible combination, 
Grid Search helped in understanding how each hyperparameter affected the model's performance 

a) n_estimators : This parameter specifies the number of decision trees that will be employed in the 
Random Forest ensemble. The model gets more complex and takes longer to train the more trees that are 
employed. Overfitting can also result from having too many trees, though. A more stable model will 
generally come from a more significant value for n_estimators; nevertheless, there comes a point at 
which adding more trees to the model no longer yields appreciably better results.. 

b) max_depth : This parameter specifies the maximum depth of every decision tree in the Random Forest 
ensemble. The tree's depth determines the model's complexity. The model becomes more sophisticated 
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and more prone to overfitting the more profound the tree. A thoughtful choice of max_depth can assist 
in reducing overfitting and enhance the model's ability to generalize to previously unseen data. 

c) min_samples_split : This value indicates the bare minimum of samples needed to divide the decision 
tree's internal nodes. Since it takes more samples to divide the nodes, a more significant value for 
min_samples_split produces a more conservative split. To reduce overfitting and manage model 
complexity, set the min_samples_split value. 

d) min_samples_leaf : This parameter indicates the bare minimum of samples needed for a decision tree 
leaf. A higher value for min_samples_leaf results in "cleaner" leaves with fewer samples in each leaf. 
Specifying the min_samples_leaf value can prevent overfitting by forcing the tree to have more 
generalized leaves. 

e) max_features : When looking for the optimal split at each node in the tree, this parameter indicates how 
many features to take into account. A lower value for max_features results in a more conservative split 
as only a small number of features are considered. Reducing max_features can help reduce model 
complexity and prevent overfitting, especially when there are many features in the dataset. 

 
Table 1. Hyperparameter Set 

Hyperparameter Value 

n_estimators 50, 100, 200 
max_depth None, 5, 10, 20 

min_samples_split 2, 5, 10 
min_samples_leaf 1, 2, 4 

max_features 'auto', 'sqrt' 

 
4. Result and Discussion 

This section presents a detailed statistical analysis of the results obtained from the hyperparameter 
optimization process of the Random Forest model for 5G coverage prediction. It includes a comparison with 
previous research, an explanation of the methods used, and the practical implications of the findings. 
Additionally, this section summarizes the main findings and suggests directions for future research. 

After running the hyperparameter optimization process on the Random Forest model for 5G coverage 
prediction, various vital results were obtained that affected the performance and effectiveness of the model. In 
this section, we will highlight the key findings of hyperparameter optimization and analyze their impact on the 
prediction quality. In this study, after performing the hyperparameter optimization process on the Random 
Forest model for 5G coverage prediction, the results obtained show a significant improvement in model 
performance compared to the initial model using the default hyperparameters. 

The results of the hyperparameter optimization are shown in Tables 2 and 3. Table 2 presents the 
hyperparameter configurations, and Table 3 compares the performance metrics before and after optimization. 
From Table 2, the optimal hyperparameter configuration is obtained for the machine learning algorithm model. 
In the 5G coverage prediction carried out, the most optimal RMSE evaluation results were obtained, reaching 
0.66, with the hyperparameter conditions shown in Table 3. Compared to coverage prediction without using 
hyperparameter optimization, the Random Forest algorithm performance evaluation results shown by RMSE 
still have a value of 1.14, where this result is more significant than after hyperparameter optimization. 
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Table 2. Hyperparameter Comparison Result 

Hyperparameter Hyperparameter 
Tuning Default 

n_estimators 50 50 

max_depth None - 
min_samples_split 2 - 

min_samples_leaf 1 - 
max_features 'auto' ‘auto’ 

 
Table 3. Performance Evaluation Comparison Result 

Random Forest 
Model RMSE MSE MAE R2 

Hyperparameter 
Tuning 0.66 0.43 0.05 0.9931 

Default 1.14 26.23 0.12 0.979 

 
To determine if the improvements are statistically significant, paired t-tests were conducted comparing the 

RMSE values before and after optimization. Additionally, 95% confidence intervals were calculated for the 
performance metrics. The t-test for RMSE showed a significant reduction after hyperparameter optimization (t 
= -3.45, p < 0.01), indicating that the optimization process had a statistically significant effect on model 
performance. The 95% confidence interval for the difference in RMSE before and after optimization is (-0.85, -
0.41). This indicates that the actual mean difference in RMSE is highly likely to be within this range, further 
confirming the significance of the results. 

This optimal result is obtained by doing several iterations of experiments to get optimal results. The 
iteration process in hyperparameter optimization refers to the iterative process carried out to evaluate the 
performance of the model with various hyperparameter combinations. This study employed Grid Search for 
hyperparameter optimization. The choice of Grid Search was due to its systematic and exhaustive nature, which 
ensures that all possible combinations of hyperparameters are evaluated. The process began with defining a 
grid of hyperparameter values for ‘n_estimators’, ‘max_depth’, ‘min_samples_split’, ‘min_samples_leaf’, and 
‘max_features’. For each combination of hyperparameters, the Random Forest model was trained on the 
training data and evaluated using 10-fold cross-validation. This iterative process was repeated until all 
combinations were tested. The combination that resulted in the lowest RMSE during cross-validation was 
selected as the optimal set. The rationale for selecting Grid Search was its simplicity and effectiveness for the 
moderate size of the hyperparameter space in this study. Random Search, although more efficient for larger 
spaces, was not deemed necessary given the manageable number of hyperparameters considered. Bayesian 
Optimization, while potentially more efficient, requires more complex implementation and was thus not chosen 
for this study. 

The process of training, performance evaluation, and hyperparameter determination is then performed 
iteratively until it reaches a defined stopping condition, such as reaching a specified maximum number of 
iterations or when the model's performance no longer improves significantly. This iteration process is essential 
as it allows a systematic search of the hyperparameter space to find the combination that gives the model the 
best performance. By performing repeated iterations, the hyperparameter optimization algorithm can "learn" 
from previous results and progressively improve the estimated model performance by testing various 
hyperparameter combinations. 
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Figure 2 shows the number of iterations performed, which is about 220 iterations with parameter settings as 
set in Table 1. Figure 2 illustrates the relationship between the number of iterations performed during the 
hyperparameter optimization process and the RMSE values achieved for the Random Forest algorithm. The 
figure provides a visual representation of how the RMSE value changes as different combinations of 
hyperparameters are evaluated through iterative optimization. The plot shows that as the number of iterations 
increases, the RMSE value tends to decrease and eventually converges. This indicates that the hyperparameter 
optimization process successfully identifies combinations that improve model performance over time. The 
lowest RMSE value achieved is 0.66, which corresponds to the optimal set of hyperparameters identified. This 
point on the plot indicates the iteration at which the best combination was found. The convergence towards a 
lower RMSE value demonstrates the consistency and reliability of the Grid Search method in systematically 
exploring the hyperparameter space and improving model accuracy. 

 

 
Figure 2. Hyperparameter Optimization Iteration vs RMSE Value for Random Forest Algortihm 

From the results of these iterations, the best hyperparameter results are 'max_depth': None, 'max_features': 
'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50, and Minimum RMSE: 0.6. The results 
of the hyperparameter optimization process show that certain combinations of hyperparameters have a 
significant impact on the accuracy of 5G coverage prediction. For example, the variable n_estimators, which 
determines the number of decision trees in the ensemble, shows that increasing the number of decision trees 
results in improved model performance up to a certain point. However, after reaching the optimal point, adding 
more decision trees no longer significantly improves model performance and can even lead to a decrease in the 
accuracy of the test data. 

In addition, hyperparameters such as max_depth, min_samples_split, and min_samples_leaf also have a 
significant impact on model performance. Setting max_depth wisely can help avoid overfitting and improve 
model generalization to new data. Similarly, proper settings for min_samples_split and min_samples_leaf can 
help control model complexity and prevent overfitting. In the default mode of 5G coverage prediction using 
this standard Random Forest algorithm, the min_samples_split and min_samples_leaf parameters are not taken 
into account, which also affects the RMSE results considerably. 

Previous studies have reported varying levels of success in 5G coverage prediction using different machine 
learning algorithms. For example, Fauzi et al. (Fauzi et al., 2023) utilized Random Forest without 
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hyperparameter tuning and achieved an RMSE of 2.65 dB. The optimized Random Forest model in this study 
now achieved an RMSE of 0.66, significantly lower than the 2.65 dB reported by Fauzi et al. This demonstrates 
the substantial improvement gained through hyperparameter optimization. Also, Chen et al. (Chen et al., 2022) 
reported RMSE values around 3 dB using Convolutional Neural Networks (CNNs). The RMSE achieved in this 
study now is also considerably lower than the RMSE reported by Chen et al. (3 dB), highlighting the 
effectiveness of the Random Forest model when properly tuned. 

While specific hyperparameter settings may result in a more complex model that matches the training data, 
it may cause the model to become too rigid and fail to generalize to never-before-seen test data. Therefore, it is 
essential to find the right balance between model complexity and prediction performance to ensure that the 
resulting model can be effectively applied in practice. 

Overall, the results and discussions in this subchapter provide deep insight into the importance of 
hyperparameter optimization in improving the performance of Random Forest models for 5G coverage 
prediction. These findings provide a strong foundation for the development and application of more accurate 
and reliable models in support of successful 5G network implementation. The optimized model can provide 
more accurate predictions of SS-RSRP, aiding network operators in identifying areas needing infrastructure 
improvement. Accurate coverage prediction enables better resource allocation, ensuring optimal deployment of 
network assets. Enhanced prediction accuracy reduces the need for extensive field measurements, saving time 
and operational costs. These findings can be implemented in day-to-day 5G network settings, improving overall 
network efficiency and user experience. 

 
5. Conclusion 

This study successfully demonstrated the importance of hyperparameter optimization in improving the 
performance of the Random Forest model for 5G coverage prediction. The optimized model achieved a 
significant reduction in RMSE, highlighting the effectiveness of Grid Search in finding the best hyperparameter 
combinations. With the results of the hyperparameter optimization process on the Random Forest model for 5G 
coverage prediction, we have successfully found the optimal hyperparameter combination, namely 'max_depth': 
None, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, and 'n_estimators': 50. This 
hyperparameter combination results in a model that significantly improves the prediction performance 
compared to the regular Random Forest model without hyperparameter optimization. In the optimized model, 
we managed to achieve a Minimum Root Mean Squared Error (RMSE) of 0.6, which is an indicator of high 
accuracy in predicting 5G coverage. These results show that by paying close attention to the right combination 
of hyperparameters, we can substantially improve the performance of the model and produce more accurate 
predictions. Comparison with the Random Forest model without hyperparameter optimization shows a 
significant difference in performance. The regular Random Forest model yields an RMSE of 1.14, which is 
higher compared to the optimized model. This confirms the importance of the hyperparameter optimization 
process in improving the accuracy and consistency of the model. However, limitations include the specific 
urban dataset used, which might affect generalizability to other environments, and the computational intensity 
of Grid Search. Practically, these results enhance the accuracy of coverage predictions, aiding telecom 
operators in optimizing resource allocation and improving network efficiency. The study's findings align with 
and extend previous research in (Chen et al., 2022; Fauzi et al., 2023), demonstrating the superior performance 
of the optimized model.  

The research conducted now can be used as a reference for further research in the future. Some 
developments that can be done for further research include implementing Bayesian Optimization or other 
advanced techniques for potentially more efficient hyperparameter tuning. We can also compare the optimized 
Random Forest model with other machine learning models, such as deep learning algorithms, to validate its 
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performance further. In real-world applications, we can test the optimized model in different real-world settings 
to validate its generalizability and robustness. Thus, the conclusion of this study confirms that the use of 
hyperparameter optimization in Random Forest models for 5G coverage prediction is an essential and 
influential step. The results not only significantly improve the performance of the model but also result in more 
accurate and reliable predictions. These findings have important implications for supporting the development 
and implementation of successful 5G networks in the future. This research contributes to the ongoing 
development of 5G technology, providing a robust framework for further studies and practical applications in 
network planning and optimization. 
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