Comparative Analysis of Microwave Link Using Space and Hybrid Diversity Configuration on Mountain Topography Area

Main Article Content

Ade Wahyudin
Alfin Hikmaturokhman

Abstract

The development of information and communication technology (ICT) in Indonesia is increasing rapidly every year. However, this increase is not comparable to the distribution of technology in remote areas, especially areas with mountainous contours. So it takes a proper backhaul network design to deploy telecommunication services in remote areas. Microwave transmission technology is widely used as a backhaul network in mountainous areas because it can reach areas that are difficult to reach by fiber optic. However, multipath fading becomes a problem in microwave communication, so to solve it, we use the diversity configuration approach. Space diversity configuration is the system most often used, but in more extreme conditions it can use a hybrid diversity configuration which is a combination of space and frequency diversity. In this study, we designed and compared the performance of two types of diversity configurations, namely space and hybrid diversity in cross-mountainous areas using simulation software Pathloss 5.0. Before comparison, these paths were tested with a point-to-point configuration to assess microwave communication performance without diversity. Based on the simulation, the resulting cross-mountain microwave communication performance using point-to-point configuration results in 99.98179% availability and 5742.79 seconds unavailability in one year, these values are still far from the ITU-T G.821 standard, namely 99.99% availability. In the configuration using Space Diversity, the quality has increased, but it cannot meet ITU standards because it is only capable of producing 99.98333% to 99.98943% availability or comparable to un-availability for 5255.53 to 3332.48 seconds/year. Meanwhile, the hybrid diversity configuration can produce a performance that meets ITU standards with an availability of 99.99122% or equivalent to un-availability for 2769.79 seconds per year.

Article Details

Section
Telecommunication

References

Attamimi, S., & Rachman, R. (2014). Perancangan Jaringan Transmisi Gelombang Mikro Pada Link Site Mranggen 2 Dengan Site Pucang Gading. Jurnal Teknologi Elektro, 5(2). https://doi.org/10.22441/jte.v5i2.764

Badan Pusat Statistik. (2018). Statistik Telekomunikasi Indonesia. Badan Pusat Statistik.

Dewanti, I. E., Wahyudin, A., & Hikmaturrokhman, A. (2017). Analisis Perbandingan Passive Repeater Back-To-Back Antenna Dan Passive Repeater Plane Reflector Menggunakan Pathloss 5 . 0 Comparative Analysis of Passive Repeater Back-To-Back Passive Repeater Antenna and Plane Reflector Using the. Senatek (Seminar Nasional Teknik) 2017, 1–8.

Fitz, M. P. (2007). Fundamentals of Communications Systems. Mc Graw Hill. https://doi.org/10.1036/0071482806

Freeman, R. L. (2004). Telecommunication System Engineering. John Wiley & Sons.

Freeman, R. L. (2007). Radio System Design For Telecommunications (3rd ed.). John Wiley & Sons.

Haykin, S. (2001). Communication System (4th ed.). John Wiley & Sons.

Hikmaturokhman, A., & Wahyudin, A. (2018). Perancangan Jaringan Gelombang Mikro Menggunakan Pathloss 5 (U. K. Usman (ed.)). Pustaka Ilmu.

Hikmaturokhman, A., Wahyudin, A., Rinanda, W. E., Pramono, S., Hidayat, A., & Sarah, A. (2020). Analysis of microwave network design using back-to-back passive repeaters with the influence of interference based on ITU-T-G821 standard. Journal of Communications, 15(4), 318–324. https://doi.org/10.12720/jcm.15.4.318-324

Hikmaturokhman, A., Wahyudin, A., Yuchintya, A. S., & Nugraha, T. A. (2017). Comparison analysis of passive repeater links prediction using methods: Barnett Vigants & ITU models. Proceedings of 2017 4th International Conference on New Media Studies, CONMEDIA 2017, 2018-Janua, 142–147. https://doi.org/10.1109/CONMEDIA.2017.8266046

ITU-T. (2002). ITU - T Recommendation G.821 Series G: Transmission Systems And Media, Digital Systems And Networks.

Kementerian Komunikasi dan Informatika. (2013). Sekilas Palapa Ring. Kominfo.Go.Id. https://kominfo.go.id/content/detail/3298/sekilas-palapa-ring/0/palapa_ring

Kizer, G. (2013). Digital Microwave Communication Engineering Point-to-Point Microwave Systems. John Wiley & Sons. https://doi.org/10.1037/0003-066X.45.9.1018

Lehpamer, H. (2010). Microwave Transmission Networks Planning, Design and Deploymeny (3rd ed., Vol. 53, Issue 9). McGraw-Hill. https://doi.org/10.1017/CBO9781107415324.004

McDermott, T. (1996). Wireless digital communications : design and theory (1st ed.). Tucson Amateur Packet Radio Corporation.

Oktaviasari, E., Wahyudin, A., & Hikmaturokhman, A. (2018). Analisis Perbandingan Interferensi Link Gelombang Mikro pada Daerah Urban dan Rural Menggunakan. Conference of Electrical Engineering, Telematics, Industrial Technology, and Creative Media, 1, 178–183.

Pradana, Z. H., & Wahyudin, A. (2018). Analisis Optimasi Space Diversity pada Link Microwave Menggunakan ITU Models. Jurnal Elektro Dan Telekomunikasi Terapan, 4(2), 586. https://doi.org/10.25124/jett.v4i2.1148

Pramono, S. (2014). Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz ( Studi Kasus : Semarang ). Politeknik Negeri Semarang, Jurnal Teknik Elektro Terapan, 3(1), 27–31.

Rahmawati, Y. Y., & Wahyudin, A. (2018). Perancangan Jaringan Backhaul Sistem Transmisi Gelombang Mikro Digital Menggunakan Frequency Diversity dan Tanpa Diversity di Wilayah Kepulauan Riau. Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto), 19(2), 63. https://doi.org/10.30595/techno.v19i2.3178

Wan, K. C., Xue, Q., Liu, X., & Hui, S. Y. (2014). Passive radio-frequency repeater for enhancing signal reception and transmission in a wireless charging platform. IEEE Transactions on Industrial Electronics, 61(4), 1750–1757. https://doi.org/10.1109/TIE.2013.2263771

Winch, R. G. (1998). Telecommunication Transmission Systems, 2nd edition (2nd ed.). McGraw-Hill.