A Feasibility Analysis of the Use of IEEE 802.11ah to extend 4G Network Coverage
Main Article Content
Abstract
Article Details
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Adame, T., Bel, A., Bellalta, B., Barcelo, J., Gonzalez, J., & Oliver, M. (2013). Capacity analysis of IEEE 802.11ah WLANs for M2M communications. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8310 LNCS. https://doi.org/10.1007/978-3-319-03871-1_13
Ameigeiras, P., Navarro-Ortiz, J., Andres-Maldonado, P., Lopez-Soler, J. M., Lorca, J., Perez-Tarrero, Q., & Garcia-Perez, R. (2016). 3GPP QoS-based scheduling framework for LTE. Eurasip Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-016-0565-9
Aust, S., Prasad, R. V., & Niemegeers, I. G. M. M. (2012). IEEE 802.11ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2012.6364903
Dawaliby, S., Bradai, A., & Pousset, Y. (2017). In depth performance evaluation of LTE-M for M2M communications. 1–8. https://doi.org/10.1109/wimob.2016.7763264
Khorov, E., Krotov, A., & Lyakhov, A. (2015). Modelling machine type communication in IEEE 802.11ah networks. 2015 IEEE International Conference on Communication Workshop (ICCW), 1149–1154. https://doi.org/10.1109/ICCW.2015.7247332
Khorov, E., Lyakhov, A., Krotov, A., & Guschin, A. (2015). A survey on IEEE 802.11ah: An enabling networking technology for smart cities. Computer Communications. https://doi.org/10.1016/j.comcom.2014.08.008
Masek, P., Zeman, K., Hosek, J., Tinka, Z., Makhlouf, N., Muthanna, A., … Novotny, V. (2015). User performance gains by data offloading of LTE mobile traffic onto unlicensed IEEE 802.11 links. 2015 38th International Conference on Telecommunications and Signal Processing, TSP 2015. https://doi.org/10.1109/TSP.2015.7296235
Muteba, F., Djouani, K., & Olwal, T. (2019). A comparative survey study on LPWA IoT technologies: Design, considerations, challenges and solutions. Procedia Computer Science, 155, 636–641. https://doi.org/10.1016/j.procs.2019.08.090
Oktaviana, A., Perdana, D., & Negara, R. M. (2018). Performance Analysis on IEEE 802.11ah Standard with Enhanced Distributed Channel Access Mechanism. CommIT (Communication and Information Technology) Journal, 12(1). https://doi.org/10.21512/commit.v12i1.3908
Park, C. W., Hwang, D., & Lee, T. J. (2014). Enhancement of IEEE 802.11ah MAC for M2M communications. IEEE Communications Letters, 18(7), 1151–1154. https://doi.org/10.1109/LCOMM.2014.2323311
Santi, S., Tian, L., Khorov, E., & Famaey, J. (2019). Accurate energy modeling and characterization of ieee 802.11ah raw and twt. Sensors (Switzerland), 19(11). https://doi.org/10.3390/s19112614
Seok, Y., & Law, D. (2016). IEEE 802.11ah (Wi-Fi in 900 MHz License-exempt Band) for IoT Application. Retrieved November 9, 2020, from IEEE Standards University website: https://www.standardsuniversity.org/e-magazine/august-2016-volume-6/ieee-802-11ah-wi-fi-900-mhz-license-exempt-band-iot-application/
Seybold, J. S. (2005). Introduction to RF Propagation. In Introduction to RF Propagation. https://doi.org/10.1002/0471743690
Šljivo, A., Kerkhove, D., Tian, L., Famaey, J., Munteanu, A., Moerman, I., … De Poorter, E. (2018). Performance evaluation of IEEE 802.11ah networks with high-throughput bidirectional traffic. Sensors (Switzerland), 18(2), 1–28. https://doi.org/10.3390/s18020325
Sun, W., Choi, M., & Choi, S. (2017). IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz. Journal of ICT Standardization. https://doi.org/10.13052/jicts2245-800x.115
Tian, L., Deronne, S., Latré, S., & Famaey, J. (2016). Implementation and validation of an IEEE 802.11ah Module for ns-3. ACM International Conference Proceeding Series. https://doi.org/10.1145/2915371.2915372
Tian, L., Famaey, J., & Latre, S. (2016). Evaluation of the IEEE 802.11ah Restricted Access Window mechanism for dense IoT networks. WoWMoM 2016 - 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks. https://doi.org/10.1109/WoWMoM.2016.7523502
Tian, L., Šljivo, A., Santi, S., De Poorter, E., Hoebeke, J., & Famaey, J. (2018). Extension of the IEEE 802.11ah ns-3 simulation module. ACM International Conference Proceeding Series, 53–60. https://doi.org/10.1145/3199902.3199906