Aplikasi Metode Consistent Fuzzy Preference Relations Dalam Evaluasi Model Pentarifan Interkoneksi Berbasis Internet Protokol

Main Article Content

Ridwan Pandiya
Ade Wahyudin

Abstract

Transparansi pelayanan telekomunikasi merupakan amanat yang tertuang dalam Undang-Undang Nomor 36 tahun 1999. Pentarifan interkoneksi bukan lagi hanya terpaku pada layanan voice dan sms saja, karena karakteristik pengguna layanan saat ini bergerak ke arah layanan data. Model pentarifan yang saat ini digunakan dalam menentukan tarif interkoneksi pada dasarnya diperuntukkan bagi layanan voice dan sms, sehingga model tersebut belum tentu sesuai jika diaplikasikan pada layanan berbasis Internet Protokol (IP). Penelitian ini merupakan evaluasi dari model-model yang tersedia dalam menentukan model yang paling efektif untuk digunakan dalam layanan berbasis IP. Penelitian ini menerapkan metode Consistent Fuzzy Preference Relations (CFPR) untuk menentukan alternatif terbaik dari model pentarifan interkoneksi berbasis IP. Metode CFPR, yang merupakan modifikasi dari metode Analytical Hierarchy Process (AHP), menjamin konsistensi matriks perbandingan berbagai kriteria ketika menggunakan AHP. Sehingga alternatif model pentarifan interkoneksi yang dihasilkan dalam penelitian ini dapat dijadikan rujukan pihak regulator tanpa meragukan konsitensi dari perbandingan kriteria-kriterianya. Berhadasarkan pengolahan data, model Pentarifan Interkoneksi Berbasis Internet Protokol yang paling disarankan adalah Bottom up -Long Run Average Incremental Cost (BU-LRAIC). Hal ini dikarenakan model tersebut memenuhi kriteria sangat baik dan fair secara teknikal, ekonomi maupun dampak social yang dihasilkan.

Article Details

Section
Telecommunication
Author Biography

Ridwan Pandiya, Institut Teknologi Telkom Purwokerto

Department of Informatics

References

Ramli, K.. (2015). Dokumen konsultasi publik penyempurnaan regulasi tarif dan interkoneksi. Kementerian Komunikasi dan Informatika.

Hardt, M., Mowat, T., Soto, C. (2011). Interconnection costing model update study. www.pwc.uk.

Chao, R. J., Chen, Y. H. (2009). Evaluation of the criteria and effectiveness of distance e-learning with consistent fuzzy preference relations. Expert System with Applications, 36, 10657 – 10662.

Shaverdi, M., Heshmati, M. R., Ramezani, I. (2014). Application of fuzzy approach for financial performance evaluation of Iranian petrochemical sector. Procedia Computer Science, 31, 995 – 1004.

Kusumawardani, R. P., Agintiara, M. (2015). Application of fuzzy AHP-TOPSIS method for decision making in human resource manager selection process. Procedia Computer Science, 72, 638 – 646.

Sun, C. C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert System with Applications, 37, 7745 – 7754.

Saaty, T. L. (1988). “What is the analytic hierarchy process?”. Springer Berlin Verlag.

Herrera-Viedma, E., Herrera, F., Chinclana, F., Luque, M. 2004. Some issues on consistency of fuzzy preference relations. European Journal of Operational Research, 154, 98 – 109.

Jafarnejad, A., Ebrahimi, M., Abbaszadeh, M. A., Abtahi, S. M. (2014). Risk management in supply chain using consistent fuzzy preference relations. International Journal of Academic Research in Business and Social Sciences, 4(1), 77 – 89.