Indonesian Non-GSO Satellites: Current Operations and Future Predictions

Main Article Content

Robertus Heru Triharjanto
Wahyudi Hasbi
Sony Dwi Harsono

Abstract

Operasi satelit di Indonesia yang dikenal luas adalah tentang operasi satelit-satelit di orbit geostasioner (GSO) untuk misi telekomunikasi. Namun, dalam dekade terakhir ini, operasi satelit-satelit non-GSO di Indonesia meningkat dengan pesat. Sehingga, tujuan dari penelitian ini adalah mengetahui mengapa peningkatan tersebut terjadi dan mendapatkan gambaran tentang masa depan operasi satelit non-GSO di Indonesia. Untuk tujuan tersebut, dilakukan ulasan atas operasi satelit non-GSO yang lalu dan saat ini. Analisis dilakukan pada karakteristik misi, pemilik/operator, dan spesifikasi dari satelit-satelit tersebut. Selain itu, dilakukan kajian pustaka tentang tren global dan lingkungan strategis yang menentukannya. Hasil studi menyimpulkan bahwa penyebab pertumbuhan satelit non-GSO di Indonesia adalah bertambahnya penggunaan aplikasi penginderaan jauh, aplikasi M2M, dan pengembangan satelit oleh LAPAN. Di masa depan, diperkirakan naiknya penggunaan satelit non-GSO untuk penginderaan jauh akan disebabkan oleh faktor yang sama. Namun, untuk telekomunikasi, akan lebih didorong oleh beroperasinya konstelasi satelit global baru. Peningkatan penggunaan satelit non-GSO untuk penginderaan jauh tidak berakibat banyak pada kebutuhan frekuensi dan stasiun Bumi. Sementara, kenaikan penggunaan satelit non-GSO untuk telekomunikasi akan memerlukan tambahan alokasi frekuensi dan stasiun Bumi yang cukup banyak.  

 

 

Indonesian satellite operations are mainly known for the operation of geostationary orbit (GSO) satellites for telecommunication missions. In the last decade, however, the activities of non-GSO satellites in Indonesia are significantly increasing. Therefore, the objectives of this research are to find out the cause of the growth and to predict the future operation of non-GSO satellites in Indonesia. For such purpose, review on the operation of non-GSO satellites in the past and now was done. Analysis on the characteristics of their missions, owners/operators, and technical characteristics of the satellites were done. Literature studies on the global trends and their defining strategic environments were also done to complete the insight. The study shows that increase in the use of non-GSO satellites is caused by the growth in remote sensing application, M2M application, and development of LAPAN’s satellites. In the future, the growth of non-GSO remote sensing satellite is predicted to be caused by the same reason. The increase in the use of non-GSO telecommunication satellites, however, will be affected more by the new global trend. The increase in non-GSO remote sensing satellites does not affect significantly on the needs of frequency and ground stations. The increase in the non-GSO telecommunication satellites, however, needs significant additional frequency allocations and ground stations.

Article Details

Section
Telecommunication

References

Ardinal, R., Harsono, S. D. (2018), Sistem Stasiun Bumi Pemancar dan Penerima Data APRS Pada Satelit LAPAN-A2, Prosiding SIPTEKGAN

Damanik, G. (2014), Perencanaan dan Pemanfaatan Orbit Satelit Untuk Kepentingan Nasional, Presentation at Focus Discussion Group Rencana Induk 25 Tahun Teknologi Satelit Nasional, Bandung, Indonesia

Damanik, G. (2015), Satellite Regulatory and Usage in Indonesia, Presentation at ITU/MIC International Satellite Symposium, Danang, Vietnam

De Selding, P. B. (2014), Google-backed Global Broadband Venture Secures Spectrum for Satellite Network, Spacenews, May 30, 2014

Geoborders (2012), The Iridium System, http://www.iridium.it/en/iridium.htm, accessed December 2018

Hanggono, A. (2017) Pemanfaatan Satelit Radar Untuk Kelestarian Sumberdaya Ikan, Presentation at FGD Satelit SAR in LAPAN, Jakarta, Indonesia

Henry, C. (2018), Telesat says ideal LEO constellation is 292 satellites, but could be 512, Spacenews, September 11, 2018

Hooper, M., (2015). Iridium Update : Cross Polar Working Group, https://docplayer.net/10228886-Iridium-update-cross-polar-working-group-mike-hooper-senior-business-manager-aviation-05-12-15.html, accessed January 2019

Imani Prima (2018), 11 Years in IoT Business: Imani Prima to Begin the Trial of Connected Vehicle System, https://imaniprima.co.id/11-years-in-iot-business-imani-prima-to-begin-the-trial-of-connected-vehicle-system/, accessed November 2018

Judianto, C.T., Harianto, and Maulana, A. (2018). Development Strategy of National Microsatellite Industry: Case Study of Indonesia. Journal of STI Policy and Management, 3(2), 145–159

Kushardono, D., Dewanti, R., Sambodo, K. A., Arief, R., Maryanto, A., Suhermanto (2016) Kebutuhan Pengguna Data Penginderaan Jauh di Indonesia: Studi Awal Untuk Conceptual Design Review Satelit Sar Ekuatorial IndonesiA INARSSAT-1, Proceeding 2nd International Conference of Indonesian Society for Remote Sensing

Nasser, E. N. (2014). Multi Mission Low Earth Orbit Equatorial Satellite for Indonesian Regions. Proceeding IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES) 2014 (pp. 121–126).

Roswintiarti, O. (2010), REDD‐Related Activities in Indonesia, Presented at 16th Asia‐Pacific Regional Space Agency Forum (APRSAF) Bangkok, Thailand

Saifudin, M. A., Karim, A., Mujtahid (2018). LAPAN-A4 Concept and Design for Earth Observation and Maritime Monitoring Missions. Proceeding IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES) 2018.

SpaceDaily (2016), OG2 In-Orbit Testing Complete, http://www.spacedaily.com/reports/OG2_In_Orbit_Testing_Complete_999.html, accessed December 2018

Spaceflight101 (2013), Orbcomm Second Generation, http://spaceflight101.com/spacecraft/orbcomm-g2/, accessed November 2018

Sugiyono (2013) Metode Penelitian Kuantitatif, Kualitatif dan R&D, 19th Edition, CV. Alfabeta, Bandung, Indonesia

Tejasukmana, B. S. (2011), Indonesia Country Report Space Based Observation for Disaster Risk Reduction, Presented at APRSAF-18, Singapore

Tim Web Pusteksat (2018a), Supporting Satelit LAPAN-A2/LAPAN-ORARI (IO-86) terhadap Bencana Gempa Bumi di Lombok, Nusa Tenggara Barat, http://pusteksat.lapan.go.id/subblog/read/2018/351/Supporting-Satelit-LAPAN-A2LAPAN-ORARI-IO-86-terhadap-Bencana-Gempa-Bumi-di-Lombok-Nusa-Tenggara-Barat/berita, accessed January 2019

Tim Web Pusteksat (2018b), Bimtek Komunikasi Melalui Satelit LAPAN-A2/LAPAN-ORARI (IO-86) dengan Radio Genggam HAKTEKNAS 2018, http://pusteksat.lapan.go.id/subblog/read/2018/347/Bimtek-Komunikasi-Melalui-Satelit-LAPAN-A2LAPAN-ORARI-IO-86-dengan-Radio-Genggam-HAKTEKNAS-2018/berita, , accessed January 2019

Triharjanto, R. H. (2018), Strategic Environment and Implementation of Satellite Technology Acquisition Programs in ASEAN, Prosiding Seminar Nasional Kebijakan Penerbangan dan Antariksa 2017

Triharjanto, R. H., & Hakim, P. R. (2017). Review of Satellite Technology Development in Indonesian Space Agency Based on Its Technical Publications in 2012-2016. In Proc. 68th International Astronautical Congress (IAC) (Vol. 3, pp. 25–29).

Triharjanto, R. H., Budiantoro, P. A., Yanto, D., & Sumantyo, J. T. S. (2018). The Design Progress of LAPAN-Chiba University. In 2018 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES).

Yuniarti, D. (2013). Studi Perkembangan dan Kondisi Satelit Indonesia. Buletin Pos dan Telekomunikasi, 11(2), 121–136.