Analisis Propagasi Gelombang Radio HF Mode Angkasa untuk Kegiatan Patroli Laut Bea Cukai
Main Article Content
Abstract
Abstrak
Makalah ini membahas tentang hasil analisis propagasi gelombang radio pada spektrum HF (High Frequency; 3–30 MHz) menggunakan mode angkasa (skywave propagation) yang ditujukan untuk mendapatkan rekomendasi frekuensi kerja (fc) bagi kegiatan patroli laut Bea Cukai. Hasil analisis menunjukkan bahwa terdapat 5 rekomendasi rentang frekuensi kerja, yakni 2,170–2,194 MHz, 4,000–4,063 MHz, 8,100–8,815 MHz, 12,230–13,200 MHz, dan 16,360–17,410 MHz. Rentang frekuensi 2,170–2,194 MHz diperuntukkan bagi penggunaan malam hari, baik untuk komunikasi antara Pangkalan Sarana Operasi (PSO) dengan kapal patroli maupun komunikasi antar-PSO. Rentang frekuensi 4,000–4,063 MHz diperuntukkan bagi komunikasi antara PSO dengan kapal patroli pada siang hari serta untuk komunikasi antar-PSO di malam hari. Rentang frekuensi 8,100–8,815 MHz hanya diperuntukkan bagi komunikasi antara PSO dengan kapal patroli pada siang hari. Sedangkan frekuensi 12,230–13,200 MHz dan 16,360–17,410 MHz diperuntukkan bagi komunikasi antar-PSO dengan jarak antara 1.000 km hingga 2.000 km dan jarak lebih dari 2.000 km pada siang hari. Frekuensi yang telah diperoleh dapat diterapkan untuk kegiatan operasional dengan menggunakan manajemen frekuensi yang bersifat manual atau dengan menggunakan sistem Automatic Link Establishment (ALE).
Abstract
This paper discusses the results of radio wave propagation analysis in HF spectrum (High Frequency; 3–30 MHz) using skywave propagation mode aimed to obtain recommendations for working frequency (fc) for operational activities of Customs and Excise (DJBC) Marine Patrol. The result shows that there are 5 working frequency range recommendations, i.e. 2.170–2.194 MHz, 4.000–4.063 MHz, 8.100–8.815 MHz, 12.230–13.200 MHz, and 16.360–17.410 MHz. Frequency range of 2.170–2.194 MHz is intended for night operation, both for communication between Operation Facility Base (PSO) and Patrol Boats and communication between each PSO. Frequency range of 4.000–4.063 MHz is intended for communication between PSO and Patrol Boats during daytime and for communication between PSOs at nighttime. The frequency range of 8.100– 8.815 MHz is only intended for communication between PSO and patrol boats in daytime, while the frequency ranges of 12.230–13.200 MHz and 16.360– 17.410 MHz are for communication between PSOs within 1,000—2,000 km and daytime communication with distance more than 2,000 km. The frequency obtained then can be used for operational communication activities, whether by manual frequency management methods or automatic methods such as Automatic Link Establishment (ALE) system.
Article Details
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Arthur, N.,P., Taylor, I.D., Eddie, K.,D. (2006). Advanced HF Spectrum Management Techniques. In 10th IET International Conference on Ionospheric Radio Systems and Techniques (IRST 2006) (pp.152–156). doi:10.1049/cp:20060256. ISSN=0537-9989
Bradley, P., A. (1996). Is There Still A Role For Propagation Predictions For Frequency Management of Ionospheric HF Communications Links?. In Proceeding of IEE Colloquium on Frequency Selection and Management Techniques for HF Communications Feb. 1996. DOI: 10.1049/ic:19960116
Cilliers, P. J. Coetzee and J. Olckers. (2004). Ionospheric mapping for HF communications and HF direction finding. In Proceeding of 7th Africon Conference in Africa (IEEE Cat. No.04CH37590), Gaborone (pp. 145–154) Vol.1. doi: 10.1109/AFRICON.2004.1406650.
Dear, V. (2011) Kajian Awal Efisiensi Waktu Sistem Automatic Link Establishment (ALE) Berbasis Manajemen Frekuensi. Berita Dirgantara Vol.12 No.12 Juni 2011. ISSN: 1411-8920.
Giesbrecht, J. (2006). A monitoring tool for HF frequency management and license enforcement. In Proceeding of 2006 10th IET International Conference on Ionospheric Radio Systems and Techniques (IRST 2006), 18–21 July 2006, DOI: 10.1049/cp:20060281
Guo, J. Y., and Barton, S. K. (2002). Fresnel Zone Antenna. Boston: Kluwer Academic Publisher. ISBN 1-4020-7124-8
Hudson, S., Horseman, A. and Sugier, J. (2016). Diurnal, Seasonal, and 11-yr Solar Cycle Variation Effects on the Virtual Ionosphere Reflection Height and Implications for the Met Office’s Lightning Detection System, ATDnet, American Meteorological Society Journals http://dx.doi.org/10.1175/JTECH-D-15-0133.1
IPS Radio and Space Services (2003). GWPS 4.1 USER GUIDE. AUSTRALIAN GOVERNMENT DEPARTMENT OF INDUSTRY SCIENCE AND RESOURCES
Kemkominfo (2018). Peraturan Menteri Komunikasi dan Informatika Tentang Tabel Alokasi Spektrum Frekuensi Radio Indonesia. Retrieved June 24, 2019 from https://jdih.kominfo.go.id/produk_hukum/.
McNamara, L., F. (1991). The Ionosphere: Communications, Surveilance, and Direction Finding, Chapter 4.HF Radio Propagation (p. 39–50). Krieger Publishing Company.
NOAA (2018). Space Weather Prediction Center-Sunspot Number Progression. NOAA-SWPC Website. Retrieved September 10, 2018 from https://www.swpc.noaa.gov/products/solar-cycle-progression.
Saakian, A. (2011). Radio Wave Propagation Fundamentals. Artecth House. ISBN -13:978-1-60807-137-1
Sa'at, N., B., and Nagarajoo, K., A. (2012). Modelling the diurnal variation of ionosphere in longitude and latitude over the equatorial region. In Proceedings of 2012 International Conference on Computer and Communication Engineering (ICCCE)(pp. 40–43). Kuala Lumpur, Malaysia: doi: 10.1109/ICCCE.2012.6271148.
Suhartini, S. (2009). Sudut Elevasi dan Ketinggian Antena Untuk Komunikasi Radio HF. Berita Dirgantara Vol. 9 No. 3 September 2008: 75–78. ISSN: 1411-8920
Susetyo, W., Hendrantoro, G., dan Affandi, A. (2008). Prediksi Jangkauan Jaringan Wireless HF untuk Sistem Peringatan Dini Bencana Di Indonesia. Prosiding Seminar Nasional Informatika (SEMNASIF) Vol 1 No. 4
Tamer, A. T., Ozguc A., dan Pektas, R. (2009). The variability of foF2 in different phases of solar cycle 23, Journal of Atmospheric and Solar-Terrestrial Physics 1364–6826
Tripathi, S. C., Khan, P. A.,Ahmad A., Bhawre P., Purohit, P. K., and Gwal A. K., (2011). Effect of enhanced X-ray flux on the D and F layer ionospheric ionization during extreme solar events. In Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace) (pp. 134–137). Penang, Malaysia. doi: 10.1109/IConSpace.2011.6015868
Wang, J., Ding, G., Wang, H. (2018). HF communications: Past, present, and future. China Communications, vol. 15, no. 9, (pp. 1–9). doi: 10.1109/CC.2018.8456447
Witvliet , B., A. (2015). Near Vertical Incidence Skywave Propagation: Elevation Angles and Optimum Antenna Height for Horizontal Dipole Antennas. In IEEE Antennas and Propagation Magazine, vol. 57, no. 1 (pp. 129–146). doi: 10.1109/MAP.2015.2397071
Zawdie, K., A., Drob, D., P., Siskind, D., E. and Coker, C. (2017). Calculating the absorption of HF radio waves in the ionosphere. Radio Science, vol. 52, no. 6, pp. 767–783, 2017. doi: 10.1002/2017RS006256