Implementasi dan Analisis Purwarupa Sistem Collision Avoidance pada Mobil Pintar Berbasis Jaringan Sensor Nirkabel [Implementation and Analysis Prototype of Collision Avoidance System in Smart Car Based on Wireless Sensor Network]
Main Article Content
Abstract
Accidents are the third highest cause of death in the world. Through the collision avoidance system applied to smart car, it is expected that accidents on the car can be avoided and the number of accidents can be reduced. This system applies the concept Wireless Sensor Network (WSN), the type of network that can pass through the process of sensing, transmitting data, and monitoring through internet connection. The design and implementation of collision avoidance prototype in this smart car works by means of the distance between the cars obtained from the Ultrasonic HC-SR04 sensor which then becomes the Arduino Uno input to regulate the speed of the car in order to avoid a collision. Communication between cars using Xbee S2 is connected to Raspberry Pi to connect to the web server. Information gained distance and speed of the car will occur on websites that can be accessed by the user. Maximum Xbee S2 test result are 89 meters. The delay value from the sensor to the monitoring system is 0.411 second, while the average throughput value is 641.73 bytes/s
*****
Kecelakaan menjadi penyebab tertinggi ketiga kematian di dunia. Melaui sistem collision avoidance yang diterapkan pada mobil pintar, diharapkan agar kecelakaan pada mobil dapat terhindarkan dan angka kecelakaan dapat berkurang. Sistem ini menerapkan konsep Wireless Sensor Network (WSN), jenis jaringan yang dapat melalukan proses sensing, pengiriman data, serta monitoring melalui koneksi internet. Perancangan dan implementasi purwarupa collision avoidance pada mobil pintar ini bekerja dengan cara mendapatkan jarak antar mobil yang didapat dari sensor Ultrasonik HC-SR04 yang kemudian menjadi input Arduino untuk mengatur kecepatan optimal mobil agar tidak terjadi tabrakan. Komunikasi antar mobil menggunakan Xbee S2 yang dihubungkan ke Raspberry Pi untuk dikoneksikan ke web server. Informasi yang didapat berupa jarak dan kecepatan mobil akan ditampilkan pada website yang dapat diakses oleh pengguna. Hasil pengujian didapatkan jangkauan maksimal Xbee S2 adalah 89 meter. Nilai delay dari sensor hingga sistem monitoring didapatkan rata-rata 0,411 detik, sedangkan nilai throughput rata-rata adalah 641,73 bytes/s.Article Details
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Aravinda, B., Chaithralakshmi, C., & Ashutha, K. (2016). Sensor Based Accident Prevention System, 4(6), 14–17. https://doi.org/10.17148/IJIREEICE.2016.4603
Arduino. (n.d.). PWM. Retrieved from https://www.arduino.cc/en/Tutorial/PWM
Ariyanti, S., & Perdana, D. (2015). Feasibility Analysis of LTE 1 . 8 GHz for Mobile Operators in Indonesia Analisis Kelayakan Implementasi LTE 1 . 8 GHz Bagi Operator Seluler di Indonesia, 13(1), 61–78.
Davis, S. P. (2016). INTELLIGENT COLLISION PREVENTIVE SYSTEM USING ARDUINO MICROCONTROLLER Motor drive Bluetooth module Ultrasonic sensor, 78–81.
Ingle, A. H., Bambal, R. K., & Shobhane, S. (2017). Intelligent Braking System. International Journal of Research In Science & Engineering, 3(April).
Lewis, J., Karthik, B. M., Lobo, J. M., Valder, J., & Rijesh, M. (2016). Fabrication of an Automated Collison Avoidance System Using Ultrasonic Sensor, 6, 97–101. https://doi.org/10.5923/c.jmea.201601.18
Marzuki, A. (n.d.). Pulse Width Modulation ( PWM ), 1–4.
Muhtadi, A; Perdana, Doan; Munadi, R. (2015). Performance Evaluation of AODV, DSDV, and ZRP Using Vehicular Traffic Load Balancing Scheme on VANETs. International Journal of Simulation System, Science and Technology.
Mukherji, A., & Eba, R. (2016). ZigBee Performance Analysis. IEEE WiSPNET.
Perdana, Doan; Fitri Sari, R. (2013). Performance Evaluation of Multi-channel Operation IEEE. International Journal of Computer Science and Network Security, 13(3), 2013.
Pratama, I. P. A. E., & Suakanto, S. (2015). Wireless Sensor Network. Bandung: Informatika.
Raza, K. M., Kamil, M., & Kumar, P. (2016). “ Speed Control of DC Motor by using PWM ,” 5(4), 307–309. https://doi.org/10.17148/IJARCCE.2016.5478
Srivastava, S., Kumar, R., & Singh, K. S. K. (2015). Collision Avoidance System for Vehicle Safety, 3(4), 2014–2016.
Sugeng, W., Istiyanto, J. E., Mustofa, K., & Ashari, A. (2015). The Impact of QoS Changes towards Network Performance. International Jurnal of Computer Networks and Communications Security, 3(2), 48–53. Retrieved from http://www.ijcncs.org/published/volume3/issue2/p5_3-2.pdf
Yasodha, R., & Babu, R. L. (2016). Integrating Wireless Sensor Network into Cloud Services for Dynamic Environment Monitoring, 2(17), 294–298.